日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,,矩形的邊分別在、上,,矩形沿射線方向,以每秒1個單位長度的速度運動.同時點從點出發(fā)沿折線以每秒1個單位長度的速度向終點運動,當點到達點時,矩形也停止運動,設(shè)點的運動時間為的面積為

          1)分別寫出點、的距離(用含的代數(shù)式表示);

          2)當點不與矩形的頂點重合時,求之間的函數(shù)關(guān)系式;

          3)設(shè)點的距離為,當時,求的值;

          4)若在點出發(fā)的同時,點從點以每秒個單位長度的速度向終點A運動,當點停止運動時,點與矩形也停止運動,設(shè)點關(guān)于的對稱點為,當的一邊與的一邊平行時,直接寫出線段的長.

          【答案】1,;(2)當0t3時,;當3t7時,;(3;(4,,

          【解析】

          1)過點Bx軸垂線,利用相似三角形可求得;

          2)分2種情況,一種是點PAD上,另一種是點PCD上,然后利用三角形面積公式可求得;

          3)直接令即可求出;

          4)存在3種情況,第一種是:QPBD,第二種是EPCDEQCB,第三種是QEBD,分別按照幾何性質(zhì)分析求解.

          1)如下圖,過點Bx軸垂線,垂足為點M

          根據(jù)平移的特點,可得∠BOM=DBA

          ∵∠BMO=∠DAB=90°,∴△BMO∽△DAB

          AB=4,AD=BC=3

          BD=5

          OB=t

          BM=,OM=

          2)情況一:當0t3時,圖形如下,過點POD的垂線,交OD于點N

          ∵∠NDP=∠BDA,∠PND=∠BAD,∴△PND∽△BAD

          AP=t,∴PD=3t

          ,∴PN=

          圖中,OD=5+t

          情況二:當3t7時,圖形如下,過點POD的垂線,交OD于點N

          圖中,PD=t3,OD=5+t

          同理,△PND∽△BCD,可得PN=

          3)情況一:當0t3

          h=PN=

          解得:t=

          情況二:當3t7

          h=PN=

          解得:t=7()

          4)情況一:QPBD,圖形如下

          由題意可得:BQ=,AP=t,則QA=4,DP=3t

          BDQP

          代入得:4

          解得:t=

          OD=5+t=

          情況二:如下圖,EPCD(EQCB)

          ∵點E是點A關(guān)于QP對稱的點

          EP=PAEQ=QA,QP=QP

          ∴△APQ≌△EPQ

          EPCDCD⊥AD

          EP⊥AD

          ∴∠APQ=∠EPQ=45°

          ∴△AQP是等腰直角三角形,AQ=PA

          4

          解得:t=

          OD=5+t=

          情況三:如下圖,QEBD,延長QEDA于點N

          ∵△APQ≌△EPQ,∴∠QEP=∠QAP=90°

          ∴△ENP是等腰直角三角形

          ∵QNBD,∴∠NQA=∠DBA,∠A=∠A

          ∴△QNA∽△BDA

          BQ=AP=t,QA=4,DP=3t

          QN=5NA=3t

          EN=QNQE=QNQA=1,NP=NAAP=32t,EP=PA=t

          ∴在Rt△ENP中,

          解得:t=t=3()

          OD=5+t=

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】今年 3 月 12 日植樹節(jié)期間, 學(xué)校預(yù)購進 A、B 兩種樹苗,若購進 A種樹苗 3 棵,B 種樹苗 5 棵,需 2100 元,若購進 A 種樹苗 4 棵,B 種樹苗 10棵,需 3800 元.

          (1)求購進 A、B 兩種樹苗的單價;

          (2)若該單位準備用不多于 8000 元的錢購進這兩種樹苗共 30 棵,求 A 種樹苗至少需購進多少棵?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】[問題]小明在學(xué)習(xí)時遇到這樣一個問題:求不等式x3+3x2x30的解集.

          他經(jīng)歷了如下思考過程:

          [回顧]

          1)如圖1,在平面直角坐標系xOy中,直線y1ax+b與雙曲線y2交于A 1,3)和B(﹣3,﹣1),則不等式ax+b的解集是   

          [探究]將不等式x3+3x2x30按條件進行轉(zhuǎn)化:

          x0時,原不等式不成立;

          x0時,不等式兩邊同除以x并移項轉(zhuǎn)化為x2+3x1;

          x0時,不等式兩邊同除以x并移項轉(zhuǎn)化為x2+3x1

          2)構(gòu)造函數(shù),畫出圖象:

          設(shè)y3x2+3x1y4,在同一坐標系中分別畫出這兩個函數(shù)的圖象;

          雙曲線y4如圖2所示,請在此坐標系中畫出拋物線yx2+3x1.(不用列表)

          3)確定兩個函數(shù)圖象公共點的橫坐標:

          觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3y4的所有x的值為   

          [解決]

          4)借助圖象,寫出解集:

          結(jié)合探究中的討論,觀察兩個函數(shù)的圖象可知:不等式x3+3x2x30的解集為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一批貨物準備運往某地,有甲、乙、丙三輛卡車可雇用.已知甲、乙、丙三輛車每次運貨量不變,且甲、乙兩車單獨運完這批貨物分別用次;甲、丙兩車合運相同次數(shù),運完這批貨物,甲車共運噸;乙、丙兩車合運相同次數(shù),運完這批貨物乙車共運噸,現(xiàn)甲、乙、丙合運相同次數(shù)把這批貨物運完,貨主應(yīng)付甲車主的運費為___________ .(按每噸運費元計算)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】圖①表示一個時鐘的鐘面垂直固定于水平桌面上,其中分針上有一點,當鐘面顯示330分時,分針垂直于桌面,點距離桌面的高度為公分,圖②表示鐘面顯示345時,點距桌面的高度為公分,若鐘面顯示355時,點距離桌面的高度為__________公分.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩車分別從、兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達地后馬上以另一速度原路返回地(掉頭的時間忽略不計),乙車到達地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離(千米)與甲車的行駛時間(小時)之間的函數(shù)圖象,則當乙車到達地的時候,甲車與地的距離為__________千米.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F

          1)求證:△AEB≌△CFD

          2)當∠ABE= 度時,四邊形BEDF是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,EAB上一點,連接DE.過點AAFDE,垂足為F,⊙O經(jīng)過點C、D、F,與AD相交于點G

          (1)求證:△AFG∽△DFC;

          (2)若正方形ABCD的邊長為4,AE=1,求O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標系中,點A在一次函數(shù)yx位于第一象限的圖象上運動,點Bx軸正半軸上運動,在AB右側(cè)以它為邊作矩形ABCD,且AB2,AD1,則OD的最大值是(  )

          A.B.+2C.+2D.

          查看答案和解析>>

          同步練習(xí)冊答案