日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】 如圖,已知在中,,,延長,使,以為圓心,長為半徑作⊙延長線于點,連接

          (1)求證:是⊙的切線;

          (2)若AB=2,求圖中陰影部分的面積.

          【答案】1)證明略;(2.

          【解析】

          1)連接OD,求出∠OAD=60°,得出等邊三角形OAD,求出AD=OA=AC,∠ODA=O=60°,求出∠ADC=ACD=OAD=30°,求出∠ODC=90°,根據(jù)切線的判定得出即可;
          2)求出OD,根據(jù)勾股定理求出CD長,分別求出三角形ODC和扇形AOD的面積,相減即可.

          1)證明:連接OD,
          ∵∠BCA=90°,∠B=30°
          ∴∠OAD=BAC=60°,
          OD=OA
          ∴△OAD是等邊三角形,
          AD=OA=AC,∠ODA=O=60°,
          ∴∠ADC=ACD=OAD=30°,
          ∴∠ODC=60°+30°=90°,
          ODDC,
          OD為半徑,
          CD是⊙O的切線;

          2)解:∵AB=2,∠ACB=90°,∠B=30°,
          OD=OA=AC=AB=1,
          由勾股定理得:CD=,

          S陰影=SODC-S扇形AOD.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:

          20

          21

          19

          16

          27

          18

          31

          29

          21

          22

          25

          20

          19

          22

          35

          33

          19

          17

          18

          29

          18

          35

          22

          15

          18

          18

          31

          31

          19

          22

          整理上面數(shù)據(jù),得到條形統(tǒng)計圖:

          樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:

          統(tǒng)計量

          平均數(shù)

          眾數(shù)

          中位數(shù)

          數(shù)值

          23

          m

          21

          根據(jù)以上信息,解答下列問題:

          (1)上表中眾數(shù)m的值為   ;

          (2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標(biāo)準(zhǔn),凡達到或超過這個標(biāo)準(zhǔn)的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)   來確定獎勵標(biāo)準(zhǔn)比較合適.(填平均數(shù)”、“眾數(shù)中位數(shù)”)

          (3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,若要在寬AD20米的城南大道兩邊安裝路燈,路燈的燈臂BC2米,且與燈柱AB120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應(yīng)該設(shè)計為多少米(結(jié)果保留根號)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】群芳雅苑花卉基地出售兩種花卉,其中馬蹄蓮每株4.5元,康乃馨每株6元.如果同一客戶所購的馬蹄蓮數(shù)量多于1000株,那么所有的馬蹄蓮每株還可優(yōu)惠0.3元.現(xiàn)某鮮花店向群芳雅苑花卉基地采購馬蹄蓮8001200株、康乃馨若干株本次采購共用了9000元.然后再以馬蹄蓮每株5.5元、康乃馨每株8元的價格賣出.(注:8001200株表示采購株數(shù)大于或等于800株,且小于或等于1200株;利潤=銷售所得金額﹣進貨所需金額)

          1)設(shè)鮮花店銷售完這兩種鮮花獲得的利潤為y元,采購馬蹄蓮x株,求yx之間的函數(shù)關(guān)系式;

          2)若該鮮花店購進的馬蹄蓮多于1000株,采購馬蹄蓮多少時才能使獲得的利潤不少于2890元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題背景:我們學(xué)習(xí)等邊三角形時得到直角三角形的一個性質(zhì):在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,ABC=30°,則:AC=AB.

          探究結(jié)論:小明同學(xué)對以上結(jié)論作了進一步研究.

          (1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BECE之間的數(shù)量關(guān)系為  

          (2)如圖2,點D是邊CB上任意一點,連接AD,作等邊ADE,且點E在∠ACB的內(nèi)部,連接BE.試探究線段BEDE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.

          (3)當(dāng)點D為邊CB延長線上任意一點時,在(2)條件的基礎(chǔ)上,線段BEDE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論  

          拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(﹣,1),點Bx軸正半軸上的一動點,以AB為邊作等邊ABC,當(dāng)C點在第一象限內(nèi),且B(2,0)時,求C點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關(guān)注和重點發(fā)展的新興產(chǎn)業(yè).如圖是太陽能電池板支撐架的截面圖,其中線段AB、CD、EF表示支撐角鋼,太陽能電池板緊貼在支撐角鋼AB上且長度均為300cm,AB的傾斜角為30°,BE=CA=50cm,支撐角鋼CD、EF與地面接觸點分別為D、F,CD垂直于地面,FEAB于點E.點A到地面的垂直距離為50cm,求支撐角鋼CDEF的長度各是多少.(結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=﹣x2+6x5x軸交于AB兩點(點A在點B左邊),與y軸交于點C.點P是拋物線上一個動點,過點Px軸的垂線,垂足為點H,交直線BC于點E

          1)求點A,BC的坐標(biāo);

          2)連接CP,當(dāng)CP平分∠OCB時,求點P的坐標(biāo);

          3)平面直角坐標(biāo)系內(nèi)是否存在點Q,使得以點P,E,B,Q為頂點的四邊形為菱形?若存在,直接寫出點Q的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】足球運球是中考體育必考項目之一蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按AB,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.

          1)本次一共抽取了幾名九年級學(xué)生?

          2)補全條形統(tǒng)計圖;

          3)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是幾度?

          4)該校九年級有300名學(xué)生,請估計足球運球測試成績達到A級的學(xué)生有多少人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)方法選擇

          如圖①,四邊形的內(nèi)接四邊形,連接,.求證:.

          小穎認(rèn)為可用截長法證明:在上截取,連接

          小軍認(rèn)為可用補短法證明:延長至點,使得

          請你選擇一種方法證明.

          (2)類比探究

          (探究1

          如圖②,四邊形的內(nèi)接四邊形,連接,,的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          (探究2

          如圖③,四邊形的內(nèi)接四邊形,連接,.若的直徑,,則線段,,之間的等量關(guān)系式是______

          (3)拓展猜想

          如圖④,四邊形的內(nèi)接四邊形,連接.若的直徑,,則線段,,之間的等量關(guān)系式是______

          查看答案和解析>>

          同步練習(xí)冊答案