日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
          問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCD=SABF.(S表示面積)

          問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

          實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)
          拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.

          問題情境:根據(jù)已知可以求得△ADE≌△FCE,就可以得出SADE=SFCE,從而得出結(jié)論。
          問題遷移:根據(jù)問題情境的結(jié)論可以得出當(dāng)直線旋轉(zhuǎn)到點P是MN的中點時SMON最小,過點M作MG∥OB交EF于G.由全等三角形的性質(zhì)可以得出結(jié)論。
          實際運用:∴。
          拓展延伸:截得四邊形面積的最大值為10

          解析分析:問題情境:根據(jù)已知可以求得△ADE≌△FCE,就可以得出SADE=SFCE,從而得出結(jié)論。
          問題遷移:根據(jù)問題情境的結(jié)論可以得出當(dāng)直線旋轉(zhuǎn)到點P是MN的中點時SMON最小,過點M作MG∥OB交EF于G.由全等三角形的性質(zhì)可以得出結(jié)論。
          實際運用:如圖3,作PP1⊥OB,MM1⊥OB,垂足分別為P1,M1,再根據(jù)條件由三角函數(shù)值就可以求出結(jié)論。
          拓展延伸:分情況討論當(dāng)過點P的直線l與四邊形OABC的一組對邊OC、AB分別交于點M、N,延長OC、AB交于點D,由條件可以得出AD=6,就可以求出△OAD的面積,再根據(jù)問題遷移的結(jié)論就可以求出最大值;
          當(dāng)過點P的直線l與四邊形OABC的另一組對邊CB、OA分別交M、N,延長CB交x軸于T,由B、C的坐標(biāo)可得直線BC的解析式,就可以求出T的坐標(biāo),從而求出△OCT的面積,再由問題遷移的結(jié)論可以求出最大值,通過比較即可以求出結(jié)論。
          解:問題情境:證明:∵AD∥BC,∴∠DAE=∠F,∠D=∠FCE。
          ∵點E為DC邊的中點,∴DE=CE。
          ∵在△ADE和△FCE中,
          ∴△ADE≌△FCE(AAS)!郤ADE=SFCE。
          ∴S四邊形ABCE+SADE=S四邊形ABCE+SFCE,即S四邊形ABCD=SABF
          問題遷移:當(dāng)直線旋轉(zhuǎn)到點P是MN的中點時S△MON最小,理由如下:
          如圖2,過點P的另一條直線EF交OA、OB于點E、F,

          設(shè)PF<PE,過點M作MG∥OB交EF于G,
          由問題情境可以得出當(dāng)P是MN的中點時S四邊形MOFG=SMON
          ∵S四邊形MOFG<SEOF,∴SMON<SEOF
          ∴當(dāng)點P是MN的中點時SMON最小。
          實際運用:如圖3,作PP1⊥OB,MM1⊥OB,垂足分別為P1,M1,
          在Rt△OPP1中,∵∠POB=30°,

          ∴PP1=OP=2,OP1=2。
          由問題遷移的結(jié)論知,當(dāng)PM=PN時,△MON的面積最小,
          ∴MM1=2PP1=4,M1P1=P1N。
          在Rt△OMM1中,,即,
          !。
          。
          。
          拓展延伸:①如圖4,當(dāng)過點P的直線l與四邊形OABC的一組對邊OC、AB分別交于點M、N,延長OC、AB交于點D,

          ∵C,∴∠AOC=45°!郃O=AD。
          ∵A(6,0),∴OA=6!郃D=6。

          由問題遷移的結(jié)論可知,當(dāng)PN=PM時,△MND的面積最小,
          ∴四邊形ANMO的面積最大。
          作PP1⊥OA,MM1⊥OA,垂足分別為P1,M1
          ∴M1P1=P1A=2。∴OM1=M1M=2,∴MN∥OA。
          。
          ②如圖5,當(dāng)過點P的直線l與四邊形OABC的另一組對邊CB、OA分別交M、N,延長CB交x軸于T,
          設(shè)直線BC的解析式為y=kx+b,

          ∵C、B(6,3),
          ,解得:。
          ∴直線BC的解析式為。
          當(dāng)y=0時,x=9,∴T(9,0)。
          。
          由問題遷移的結(jié)論可知,當(dāng)PM=PN時,△MNT的面積最小,
          ∴四邊形CMNO的面積最大。
          ∴NP1=M1P1,MM1=2PP1=4!,解得x=5!郙(5,4)。
          ∴OM1=5。
          ∵P(4,2),∴OP1=4!郟1M1=NP1=1。∴ON=3!郚T=6。
          。
          。
          ∴綜上所述:截得四邊形面積的最大值為10。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•連云港)小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
          問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)

          問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

          實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,
          3
          ≈1.73)
          拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B、C、P的坐標(biāo)分別為(6,0)(6,3)(
          9
          2
          ,
          9
          2
          )、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:

          問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCD=SABF.(S表示面積)

          問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

          實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)

          拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
          問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)

          問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

          實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,≈1.73)
          拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B、C、P的坐標(biāo)分別為(6,0)(6,3)(,)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(江蘇連云港卷)數(shù)學(xué)(解析版) 題型:解答題

          小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:

          問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCD=S△ABF.(S表示面積)

          問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

          實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)

          拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.

           

          查看答案和解析>>

          同步練習(xí)冊答案