日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,直線AB交x軸于點(diǎn)A(5,0),交y軸于點(diǎn)B,AO是⊙M的直徑,其半圓交AB于點(diǎn)C,且AC=3.取BO的中點(diǎn)D,連接CD、MD和OC.
          (1)求證:CD是⊙M的切線;
          (2)二次函數(shù)的圖象經(jīng)過點(diǎn)D、M、A,其對(duì)稱軸上有一動(dòng)點(diǎn)P,連接PD、PM,求△PDM的周長最小時(shí)點(diǎn)P的坐標(biāo);
          (3)在(2)的條件下,當(dāng)△PDM的周長最小時(shí),拋物線上是否存在點(diǎn)Q,使S△QAM=S△PDM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          【答案】分析:(1)連接CM,可以得出CM=OM,就有∠MOC=∠MCO,由OA為直徑,就有∠ACO=90°,D為OB的中點(diǎn),就有CD=OD,∠DOC=∠DCO,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出結(jié)論;
          (2)根據(jù)條件可以得出△ACO∽△AOB而求出,從而求出AB,在Rt△AOB中由勾股定理就可以求出OB的值,根據(jù)D是OB的中點(diǎn)就可以求出D的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式,求出對(duì)稱軸,根據(jù)軸對(duì)稱的性質(zhì)連接AD交對(duì)稱軸于P,先求出AD的解析式就可以求出P的坐標(biāo);
          (3)根據(jù)S△PDM=S△ADM-S△APM而求出其值就可以表示出S△QAM的大小,設(shè)Q的坐標(biāo)為m,根據(jù)三角形的面積公式就可以求出橫坐標(biāo)而得出結(jié)論.
          解答:(1)證明:連接CM,
          ∵AO是直徑,M是圓心,
          ∴CM=OM,∠ACO=90°,
          ∴∠MOC=∠MCO.
          ∵D為OB的中點(diǎn),
          ∴CD=OD,
          ∴∠DOC=∠DCO.
          ∵∠DOC+∠MOC=90°,
          ∴∠DCO+∠MCO=90°,
          即∠MCD=90°,
          ∴CD是⊙M的切線;

          (2)解:∵∠ACO=∠AOB=90°,∠OAB=∠OAB,
          ∴△ACO∽△AOB,
          ,
          ,
          ∴AB=
          在Rt△AOB中,由勾股定理,得
          BO=,
          ∵D為OB的中點(diǎn),
          ∴OD=OB=
          ∴D(0,).
          ∵OM=AM=OA=
          ∴M(,0).設(shè)拋物線的解析式為y=a(x-)(x-5),由題意,得
          =a(0-)(0-5),
          解得:a=,
          ∴拋物線的解析式為:y=(x-)(x-5),
          =(x-2-
          連接AD交對(duì)稱軸于P,設(shè)直線AD的解析式為y=kx+b,由題意,得
          ,
          解得:,
          ∴直線AD的解析式為:y=-x+,
          當(dāng)x=時(shí),
          y=,
          ∴P();

          (3)解:存在.
          ∵S△PDM=S△ADM-S△APM,
          ∴S△PDM=××-××,
          =
          ∴S△QAM==
          設(shè)Q的坐標(biāo)為m,由題意,得
          ,
          ∴|m|=
          ∴m=±,
          當(dāng)m=時(shí),
          =(x-2-
          x1=,x2=,
          當(dāng)m=-時(shí),
          -=(x-2-
          x=
          ∴Q(,),(,),(,-).
          點(diǎn)評(píng):本題考查圓周角定理的運(yùn)用,勾股定理的運(yùn)用,圓的切線的判定定理的運(yùn)用,待定系數(shù)法求函數(shù)的解析式的運(yùn)用,拋物線的頂點(diǎn)式的運(yùn)用,三角形的面積公式的運(yùn)用,軸對(duì)稱性質(zhì)的運(yùn)用,解答時(shí)求出拋物線的解析式是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
          (1)求點(diǎn)B的坐標(biāo);
          (2)當(dāng)∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
          (3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案