日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在正方形紙片ABCD中,對角線AC,BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB,AC于點G,E,連接GF.
          (1)求∠AGD的度數(shù);
          (2)證明四邊形AEFG是菱形;
          (3)證明BE=2OG.
          分析:(1)根據(jù)折疊的性質(zhì)我們能得出∠ADG=∠ODG,也就求出了∠ADG的度數(shù),那么在三角形AGD中用三角形的內(nèi)角和即可求出∠AGD的度數(shù);
          (2)我們根據(jù)折疊的性質(zhì)就能得出AE=EF,AG=GF,只要再證出AE=AG就能得出AEFG是菱形,可用角的度數(shù)進行求解,(1)中應(yīng)經(jīng)求出了∠AGD的度數(shù),那么就能求出∠AGE的度數(shù),在直角三角形AED中,有了∠ADE的度數(shù),就能求出∠AED的度數(shù),這樣得出AE=AG后就能證出AEFG是菱形了.
          (3)我們可通過相似三角形DEF和DOG得出EF和OG的比例關(guān)系,然后再在直角三角形BEF中求出BE和EF的關(guān)系,進而求出BE和OG的關(guān)系.
          解答:解:(1)根據(jù)折疊的對稱性,可知∠ADG=∠BDG=22.5°.
          ∵四邊形ABCD是正方形,
          ∴∠DCG=45°,
          ∴∠AGD=45°+67.5°=112.5°.

          證明:(2)由對稱性,可知AE=EF,AG=FG,
          ∴∠AEG=90°-22.50°=67.5°,
          ∴∠AGE=180°-112.5°=67.5°,
          ∴AE=AG,精英家教網(wǎng)
          ∴AE=AG=EF=GF,
          ∴四邊形AEFG是菱形;

          證明:(3)∵EF⊥BD,AO⊥BD,
          ∴EF∥AC,
          ∴△DOG∽△DFE,
          OG
          EF
          =
          DO
          DF
          =
          2
          2
          ,
          ∴EF=
          2
          OG,
          在直角三角形BEF中,∠EBF=45°,
          ∴BE=
          2
          EF=2OG.
          點評:主要考查了正方形的性質(zhì),菱形的判定,相似三角形的判定和性質(zhì)等知識點,根據(jù)折疊的性質(zhì)的角和邊相等是解題的關(guān)鍵.折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,只是位置變化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正方形紙片ABCD中,對角線AC,BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB,AC于點E,G.連接GF.下列結(jié)論:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG.其中正確結(jié)論的個數(shù)是( 。
          A、1B、2C、3D、4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在正方形紙片ABCD中,E,F(xiàn)分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BM與EF交于點P,再展開.則下列結(jié)論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有( 。
          A、1個B、2個C、3個D、4個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•大慶模擬)如圖,在正方形紙片ABCD中,E為BC的中點.將紙片折疊,使點A與點E重合,點D落在點D′處,MN為折痕.若梯形ADMN的面積為S1,梯形BCMN的面積為S2,則
          S1
          S2
          的值為
          3
          5
          3
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,折痕DE分別交AB、AC于點E、G,連接GF.下列結(jié)論:
          ①∠AGD=112.5°;②tan∠AED=2;③△AGD的面積=△OGD的面積;④AE=GF;⑤BE=2OG.
          其中正確結(jié)論的序號是(  )

          查看答案和解析>>

          同步練習(xí)冊答案