日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若直線y=
          1
          2
          x+n
          與直線y=mx-1相交于點(diǎn)(1,-2),則( 。
          分析:把(1,-2)分別代入兩函數(shù)解析式,然后解兩個(gè)一次方程即可.
          解答:解:把(1,-2)分別代入y=
          1
          2
          x+n
          與y=mx-1得
          1
          2
          +n=-2,m-1=-2,
          解得m=-1,n=
          5
          2

          故選C.
          點(diǎn)評(píng):本題考查了兩直線平行或相交的問題:直線y=k1x+b1(k1≠0)和直線y=k2x+b2(k2≠0)平行,則k1=k2;若直線y=k1x+b1(k1≠0)和直線y=k2x+b2(k2≠0)相交,則交點(diǎn)坐標(biāo)滿足兩函數(shù)的解析式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          若直線y=
          1
          2
          x-2與直線y=-
          1
          4
          x+a相交于x軸上,則直線y=-
          1
          4
          x+a不經(jīng)過( 。
          A、第一象限B、第二象限
          C、第三象限D、第四象限

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          若直線y=-
          1
          2
          x+2與直線y=kx平行,則k等于( 。
          A、-2
          B、2
          C、
          1
          2
          D、-
          1
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,二次函數(shù)y1=ax2+bx+c(a≠0)頂點(diǎn)坐標(biāo)為(1,4),與x軸一個(gè)交點(diǎn)為(3,0)
          (1)求二次函數(shù)解析式;
          (2)若直線y2=-
          12
          x+2
          與拋物線交于A、B兩點(diǎn),求y1≥y2時(shí)x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•燕山區(qū)一模)己知二次函數(shù)y1=x2-2tx+(2t-1)(t>1)的圖象為拋物線C1
          (1)求證:無論t取何值,拋物線C1與y軸總有兩個(gè)交點(diǎn);
          (2)已知拋物線C1與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),將拋物線C1作適當(dāng)?shù)钠揭疲脪佄锞C2y2=(x-t)2,平移后A、B的對應(yīng)點(diǎn)分別為D(m,n),E(m+2,n),求n的值.
          (3)在(2)的條件下,將拋物線C2位于直線DE下方的部分沿直線DE向上翻折后,連同C2在DE上方的部分組成一個(gè)新圖形,記為圖形G,若直線y=-
          12
          x+b
          (b<3)與圖形G有且只有兩個(gè)公共點(diǎn),請結(jié)合圖象求b的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•廈門質(zhì)檢)已知拋物線y=x2-2bx+c(c>0)與y軸的交點(diǎn)為A,頂點(diǎn)為M(m,n).
          (1)若c=2b-1,點(diǎn)M在x軸上,求c的值.
          (2)若直線y=-
          12
          x+t
          過點(diǎn)A,且與x軸交點(diǎn)為B,直線和拋物線的另一交點(diǎn)為P,且P為線段AB的中點(diǎn).當(dāng)n取得最大值時(shí),求拋物線的解析式.

          查看答案和解析>>

          同步練習(xí)冊答案