日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中,已知拋物線(xiàn) (b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,–1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
          (1)如圖,若該拋物線(xiàn)過(guò)A,B兩點(diǎn),求b,c的值;
          (2)平移(1)中的拋物線(xiàn),使頂點(diǎn)P在直線(xiàn)AC上滑動(dòng),且與直線(xiàn)AC交于另一點(diǎn)Q.
          ①點(diǎn)M在直線(xiàn)AC下方,且為平移前(1)中的拋物線(xiàn)上的點(diǎn),當(dāng)以M,P,Q三點(diǎn)為頂點(diǎn)的三角形是以PQ為腰的等腰直角三角形時(shí),求點(diǎn)M的坐標(biāo);
          ②取BC的中點(diǎn)N,連接NP,BQ.當(dāng)取最大值時(shí),點(diǎn)Q的坐標(biāo)為_(kāi)_______.
          (1);(2)①(4,﹣1),(﹣2,﹣7);②.

          試題分析:(1)先求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求即可求得b,c的值.
          (2)①首先求出直線(xiàn)AC的解析式和線(xiàn)段PQ的長(zhǎng)度,作為后續(xù)計(jì)算的基礎(chǔ),當(dāng)以M,P,Q三點(diǎn)為頂點(diǎn)的三角形是以PQ為腰的等腰直角三角形時(shí),點(diǎn)M到PQ的距離為.此時(shí),將直線(xiàn)AC向右平移4個(gè)單位后所得直線(xiàn)(y=x-5)與拋物線(xiàn)的交點(diǎn),即為所求之M點(diǎn).
          ②由①可知,PQ=為定值,因此當(dāng)NP+BQ取最小值時(shí),有最大值.如答圖2所示,作點(diǎn)B關(guān)于直線(xiàn)AC的對(duì)稱(chēng)點(diǎn)B′,由分析可知,當(dāng)B′、Q、F(AB中點(diǎn))三點(diǎn)共線(xiàn)時(shí),NP+BQ最小,進(jìn)而求出點(diǎn)Q的坐標(biāo).
          試題解析:(1)由題意,得點(diǎn)B的坐標(biāo)為(4,﹣1).
          ∵拋物線(xiàn)過(guò)A(0,﹣1),B(4,﹣1)兩點(diǎn),
          ,解得.
          (2)①由(1)得拋物線(xiàn)的函數(shù)表達(dá)式為:.
          ∵A(0,﹣1),C(4,3),∴直線(xiàn)AC的解析式為:y=x﹣1.
          設(shè)平移前拋物線(xiàn)的頂點(diǎn)為P0,則由(1)可得P0的坐標(biāo)為(2,1),且P0在直線(xiàn)AC上.
          ∵點(diǎn)P在直線(xiàn)AC上滑動(dòng),∴可設(shè)P的坐標(biāo)為(m,m﹣1).
          則平移后拋物線(xiàn)的函數(shù)表達(dá)式為:.
          解方程組:,解得,.
          ∴P(m,m﹣1),Q(m﹣2,m﹣3).
          過(guò)點(diǎn)P作PE∥x軸,過(guò)點(diǎn)Q作QE∥y軸,則
          PE=m﹣(m﹣2)=2,QE=(m﹣1)﹣(m﹣3)=2,
          ∴PQ==AP0.
          當(dāng)以M,P,Q三點(diǎn)為頂點(diǎn)的三角形是以PQ為腰的等腰直角三角形時(shí),點(diǎn)M到PQ的距離為(即為PQ的長(zhǎng)),
          由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
          △ABP0為等腰直角三角形,且BP0⊥AC,BP0=.
          如答圖1,過(guò)點(diǎn)B作直線(xiàn)l1∥AC,交拋物線(xiàn)于點(diǎn)M,則M為符合條件的點(diǎn).
          ∴可設(shè)直線(xiàn)l1的解析式為:y=x+b1.
          ∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5.∴直線(xiàn)l1的解析式為:y=x﹣5.
          解方程組,得:,.
          ∴M1(4,﹣1),M2(﹣2,﹣7).

          ②取點(diǎn)B關(guān)于A(yíng)C的對(duì)稱(chēng)點(diǎn)B′,易得點(diǎn)B′的坐標(biāo)為(0,3),BQ=B′Q.
          如答圖2,連接QF,F(xiàn)N,QB′,易得FN∥PQ,且FN=PQ,
          ∴四邊形PQFN為平行四邊形.
          ∴NP=FQ.
          ∴NP+BQ=FQ+B′Q≥FB′.
          ∴當(dāng)B′、Q、F三點(diǎn)共線(xiàn)時(shí),NP+BQ最小,則取最大值,
          ∴點(diǎn)Q的坐標(biāo)為.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,直線(xiàn)y=x+m與拋物線(xiàn)y=x2-2x+l交于不同的兩點(diǎn)M、N(點(diǎn)M在點(diǎn)N的左側(cè)).
          (1)設(shè)拋物線(xiàn)的頂點(diǎn)為B,對(duì)稱(chēng)軸l與直線(xiàn)y=x+m的交點(diǎn)為C,連結(jié)BM、BN,若S△MBC=S△NBC,求直線(xiàn)MN的解析式;
          (2)在(1)條件下,已知點(diǎn)P(t,0)為x軸上的一個(gè)動(dòng)點(diǎn),
          ①若△PMN為直角三角形,求點(diǎn)P的坐標(biāo).
          ②若∠MPN>90°,則t的取值范圍是     

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A(-1, 0)、B(4, 5)兩點(diǎn),過(guò)點(diǎn)B作BC⊥x軸,垂足為C.
          (1)求拋物線(xiàn)的解析式;
          (2)求tan∠ABO的值;
          (3)點(diǎn)M是拋物線(xiàn)上的一個(gè)點(diǎn),直線(xiàn)MN平行于y軸交直線(xiàn)AB于N,如果以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的橫坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,已知點(diǎn)A1,A2,…,A2011在函數(shù)位于第二象限的圖象上,點(diǎn)B1,B2,…,B2011在函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,…,C2011在y軸的正半軸上,若四邊形,…,都是正方形,則正方形的邊長(zhǎng)為
          A.2010B.2011C.2010D.2011

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,矩形OABC在平面直角坐標(biāo)系xoy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線(xiàn)的頂點(diǎn)在BC邊上,且拋物線(xiàn)經(jīng)過(guò)O、A兩點(diǎn),直線(xiàn)AC交拋物線(xiàn)于點(diǎn)D。
          (1)求拋物線(xiàn)的解析式;
          (2)求點(diǎn)D的坐標(biāo);
          (3)若點(diǎn)M在拋物線(xiàn)上,點(diǎn)N在x軸上,是否存在以點(diǎn)A、D、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖所示,已知二次函數(shù)經(jīng)過(guò)、、C三點(diǎn),點(diǎn)是拋物線(xiàn)與直線(xiàn)的一個(gè)交點(diǎn).
          (1)求二次函數(shù)關(guān)系式和點(diǎn)C的坐標(biāo);
          (2)對(duì)于動(dòng)點(diǎn),求的最大值;
          (3)若動(dòng)點(diǎn)M在直線(xiàn)上方的拋物線(xiàn)運(yùn)動(dòng),過(guò)點(diǎn)M做x軸的垂線(xiàn)交x軸于點(diǎn)F,如果直線(xiàn)AP把線(xiàn)段MF分成1:2的兩部分,求點(diǎn)M的坐標(biāo)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知二次函數(shù)(m是常數(shù))
          (1)求證:不論m為何值,該函數(shù)的圖像與x軸沒(méi)有公共點(diǎn);
          (2)把該函數(shù)的圖像沿x軸向下平移多少個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖像與x軸只有一個(gè)公共點(diǎn)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,一段拋物線(xiàn)y=﹣x(x﹣1)(0≤x≤1)記為m1,它與x軸交點(diǎn)為O、A1,頂點(diǎn)為P1;將m1繞點(diǎn)A1旋轉(zhuǎn)180°得m2,交x軸于點(diǎn)A2,頂點(diǎn)為P2;將m2繞點(diǎn)A2旋轉(zhuǎn)180°得m3,交x軸于點(diǎn)A3,頂點(diǎn)為P3,…,如此進(jìn)行下去,直至得m10,頂點(diǎn)為P10,則P10的坐標(biāo)為(     ).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          一家用電器開(kāi)發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價(jià)40元出售,每月可銷(xiāo)售20萬(wàn)件.為了增加銷(xiāo)量,公司決定采取降價(jià)的辦法,經(jīng)市場(chǎng)調(diào)研,每降價(jià)1元,月銷(xiāo)售量可增加2萬(wàn)件.
          ⑴ 求出月銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
          ⑵ 求出月銷(xiāo)售利潤(rùn)z(萬(wàn)元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并在下面坐標(biāo)系中,畫(huà)出圖象草圖;

          ⑶ 為了使月銷(xiāo)售利潤(rùn)不低于480萬(wàn)元,請(qǐng)借助⑵中所畫(huà)圖象進(jìn)行分析,說(shuō)明銷(xiāo)售單價(jià)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案