日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】把一副三角板按如圖甲放置,其中∠ACB=∠DEC90°,∠A45°,∠D30°,斜邊AB6cm,DC7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到D1CE1(如圖乙).這時(shí)ABCD1相交于點(diǎn)O、與D1E1相交于點(diǎn)F

          1)求∠OFE1的度數(shù);

          2)求線(xiàn)段AD1的長(zhǎng);

          3)若把DCE繞著點(diǎn)C順時(shí)針再旋轉(zhuǎn)30°D2CE2,這時(shí)點(diǎn)BD2CE2的內(nèi)部、外部、還是邊上?說(shuō)明理由.

          【答案】1)∠OFE1120°;(2AD15;(3)點(diǎn)B在△D2CE2的內(nèi)部.理由見(jiàn)解析.

          【解析】

          1)根據(jù)旋轉(zhuǎn)角求出∠OCB45°,從而求出∠COB90°,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解;

          2)根據(jù)等腰直角三角形的性質(zhì)求出AOCOAB,再求出OD1,然后利用勾股定理列式計(jì)算即可得解;

          3)設(shè)直線(xiàn)CBD2E2相交于P,然后判斷出△CPE2是等腰直角三角形,再求出CP,然后與CB相比較即可得解.

          1)∵旋轉(zhuǎn)角為15°,

          ∴∠OCB60°15°45°,

          ∴∠COB180°45°45°90°,

          CD1AB,

          RtD1OF中,∠OFE1=∠CD1E1+D1OF30°+90°120°;

          2)∵CD1AB,

          AOCOAB×63,

          OD1D1CCO734,

          RtAD1O中,由勾股定理得,AD15

          3)點(diǎn)B在△D2CE2的內(nèi)部.

          理由:設(shè)直線(xiàn)CBD2E2相交于P,

          ∵△DCE繞著點(diǎn)C順時(shí)針再旋轉(zhuǎn)30°

          ∴∠PCE215°+30°45°,

          ∴△CPE2是等腰直角三角形,

          CPCE2,

          AB6,

          CBAB3,即CBCP,

          ∴點(diǎn)B在△D2CE2的內(nèi)部.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在四邊形ABCD,B+D=180°,對(duì)角線(xiàn)AC平分∠BAD

          (1)如圖1,若∠DAB=120°,且∠B=90°,易證AD+BAAC

          (2)如圖2,若將(1)中的條件B=90°”去掉,(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.

          (3)如圖3,若∠DAB=90°,探究邊AD、AB與對(duì)角線(xiàn)AC的數(shù)量關(guān)系并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,AB=6,AD=8,以BC為斜邊在矩形所在平面作直角三角形BECFCD的中點(diǎn),則EF的最小值為

          A. B. 4C. D. 1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】4分)如圖,拋物線(xiàn)的對(duì)稱(chēng)軸是.且過(guò)點(diǎn)(,0),有下列結(jié)論:abc0a﹣2b+4c=0;25a﹣10b+4c=0;3b+2c0;a﹣b≥mam﹣b);其中所有正確的結(jié)論是 .(填寫(xiě)正確結(jié)論的序號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)、.

          1)求拋物線(xiàn)的解析式,并寫(xiě)出頂點(diǎn)的坐標(biāo);

          2)若點(diǎn)在拋物線(xiàn)上,且點(diǎn)的橫坐標(biāo)為8,求四邊形的面積

          3)定點(diǎn)軸上,若將拋物線(xiàn)的圖象向左平移2各單位,再向上平移3個(gè)單位得到一條新的拋物線(xiàn),點(diǎn)在新的拋物線(xiàn)上運(yùn)動(dòng),求定點(diǎn)與動(dòng)點(diǎn)之間距離的最小值(用含的代數(shù)式表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一次函數(shù)的圖象與雙曲線(xiàn)相交于A(-12)B(2,b)兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.

          (1)求一次函數(shù)的解析式;

          (2)根據(jù)圖象直接寫(xiě)出不等式的解集;

          (3)經(jīng)研究發(fā)現(xiàn):在y軸負(fù)半軸上存在若干個(gè)點(diǎn)P,使得為等腰三角形。請(qǐng)直接寫(xiě)出P點(diǎn)所有可能的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分別是ACAB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t0t4s.解答下列問(wèn)題:

          1)當(dāng)t為何值時(shí),以點(diǎn)EP、Q為頂點(diǎn)的三角形與ADE相似?

          2)當(dāng)t為何值時(shí),EPQ為等腰三角形?(直接寫(xiě)出答案即可);

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小圓同學(xué)對(duì)圖形旋轉(zhuǎn)前后的線(xiàn)段之間、角之間的關(guān)系進(jìn)行了拓展探究.

          (一)猜測(cè)探究

          中,是平面內(nèi)任意一點(diǎn),將線(xiàn)段繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)與相等的角度,得到線(xiàn)段,連接

          1)如圖1,若是線(xiàn)段上的任意一點(diǎn),請(qǐng)直接寫(xiě)出的數(shù)量關(guān)系是   ,的數(shù)量關(guān)系是   

          2)如圖2,點(diǎn)延長(zhǎng)線(xiàn)上點(diǎn),若內(nèi)部射線(xiàn)上任意一點(diǎn),連接,(1)中結(jié)論是否仍然成立?若成立,請(qǐng)給予證明,若不成立,請(qǐng)說(shuō)明理由.

          (二)拓展應(yīng)用

          如圖3,在中,,,,上的任意點(diǎn),連接,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),得到線(xiàn)段,連接.求線(xiàn)段長(zhǎng)度的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】投資8000元圍成一個(gè)矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造,墻長(zhǎng)35m,平行于墻的邊的費(fèi)用為100元/m,垂直于墻的邊的費(fèi)用為250元/m,設(shè)平行的墻的邊長(zhǎng)為xm.

          (1)設(shè)垂直于墻的一邊長(zhǎng)為ym,直接寫(xiě)出y與x之間的函數(shù)關(guān)系式;

          (2)若菜園面積為300m2,求x的值;

          (3)求菜園的最大面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案