日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,AB是⊙O的直徑,E是AB延長(zhǎng)線上一點(diǎn),EC切⊙O于點(diǎn)C,OP⊥AO交AC于點(diǎn)P,交EC的延長(zhǎng)線于點(diǎn)D.

          (1)求證:△PCD是等腰三角形;
          (2)CG⊥AB于H點(diǎn),交⊙O于G點(diǎn),過B點(diǎn)作BF∥EC,交⊙O于點(diǎn)F,交CG于Q點(diǎn),連接AF,如圖2,若sinE= ,CQ=5,求AF的值.

          【答案】
          (1)解:連接OC,

          ∵EC切⊙O于點(diǎn)C,

          ∴OC⊥DE,

          ∴∠1+∠3=90°,

          又∵OP⊥OA,

          ∴∠2+∠4=90°,

          ∵OA=OC,

          ∴∠1=∠2,

          ∴∠3=∠4,

          又∵∠4=∠5,

          ∴∠3=∠5,

          ∴DP=DC,即△PCD為等腰三角形


          (2)解:如圖2,連接OC、BC,

          ∵DE與⊙O相切于點(diǎn)E,

          ∴∠OCB+∠BCE=90°,

          ∵OC=OB,

          ∴∠OCB=∠OBC,

          ∴∠OBC+∠BCE=90°,

          又∵CG⊥AB,

          ∴∠OBC+∠BCG=90°,

          ∴∠BCE=∠BCG,

          ∵BF∥DE,

          ∴∠BCE=∠QBC,

          ∴∠BCG=∠QBC,

          ∴QC=QB=5,

          ∵BF∥DE,

          ∴∠ABF=∠E,

          ∵sinE= ,

          ∴sin∠ABF= ,

          ∴QH=3、BH=4,

          設(shè)⊙O的半徑為r,

          ∴在△OCH中,r2=82+(r﹣4)2,

          解得:r=10,

          又∵∠AFB=90°,sin∠ABF= ,

          ∴AF=12.


          【解析】本題主要考查切線的性質(zhì)、平行線的性質(zhì)及三角函數(shù)的應(yīng)用等知識(shí)的綜合,根據(jù)切線性質(zhì)和平行線性質(zhì)及垂直性質(zhì)證∠BCG=∠QBC是解題的關(guān)鍵.(1)連接OC,由切線性質(zhì)和垂直性質(zhì)得∠1+∠3=90°、∠2+∠4=90°,繼而可得∠3=∠5得證;(2)連接OC、BC,先根據(jù)切線性質(zhì)和平行線性質(zhì)及垂直性質(zhì)證∠BCG=∠QBC得QC=QB=5,而sinE=sin∠ABF= ,可知QH=3、BH=4,設(shè)圓的半徑為r,在RT在△OCH中根據(jù)勾股定理可得r的值,在RT△ABF中根據(jù)三角函數(shù)可得答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.

          (1)求BD的長(zhǎng);
          (2)求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量?jī)砂痘ハ嗥叫械囊欢魏拥膶挾,在河的南岸邊點(diǎn)A處,測(cè)得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走60m到達(dá)C點(diǎn),測(cè)得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖2.

          (1)求∠CBA的度數(shù).
          (2)求出這段河的寬(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C:y=x2﹣2x+1的頂點(diǎn)為P,與y軸的交點(diǎn)為Q,點(diǎn)F(1, ).
          (1)求點(diǎn)P,Q的坐標(biāo);
          (2)將拋物線C向上平移得到拋物線C′,點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)為Q′,且FQ′=OQ′.
          ①求拋物線C′的解析式;
          ②若點(diǎn)P關(guān)于直線Q′F的對(duì)稱點(diǎn)為K,射線FK與拋物線C′相交于點(diǎn)A,求點(diǎn)A的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算
          (1)計(jì)算:﹣22+(﹣ 1+2sin60°﹣|1﹣ |
          (2)先化簡(jiǎn),再求值:( ﹣x﹣1)÷ ,其中x=﹣2.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系內(nèi)按下列要求完成作圖(不要求寫作法,保留作圖痕跡).

          (1)以(0,0)為圓心,3為半徑畫圓;
          (2)以(0,﹣1)為圓心,1為半徑向下畫半圓;
          (3)分別以(﹣1,1),(1,1)為圓心,0.5為半徑畫圓;
          (4)分別以(﹣1,1),(1,1)為圓心,1為半徑向上畫半圓.
          (向上、向下指在經(jīng)過圓心的水平線的上方和下方)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣2,0),B(2,0),C(3,5).

          (1)求過點(diǎn)A,C的直線解析式和過點(diǎn)A,B,C的拋物線的解析式;
          (2)求過點(diǎn)A,B及拋物線的頂點(diǎn)D的⊙P的圓心P的坐標(biāo);
          (3)在拋物線上是否存在點(diǎn)Q,使AQ與⊙P相切,若存在請(qǐng)求出Q點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一次函數(shù)y1=ax+c和反比例函數(shù)y2= 的圖象如圖所示,則二次函數(shù)y3=ax2+bx+c的大致圖象是(

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D、E,AD與BE相交于點(diǎn)F.
          (1)求證:△ACD∽△BFD;
          (2)若∠ABD=45°,AC=3時(shí),求BF的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案