日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時,水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為米.

          【答案】2
          【解析】解:如圖,
          建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,
          拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標(biāo)為(0,2),
          通過以上條件可設(shè)頂點式y(tǒng)=ax2+2,其中a可通過代入A點坐標(biāo)(﹣2,0),
          到拋物線解析式得出:a=﹣0.5,所以拋物線解析式為y=﹣0.5x2+2,
          當(dāng)水面下降1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
          當(dāng)y=﹣1時,對應(yīng)的拋物線上兩點之間的距離,也就是直線y=﹣1與拋物線相交的兩點之間的距離,
          可以通過把y=﹣1代入拋物線解析式得出:
          ﹣1=﹣0.5x2+2,
          解得:x=± ,
          所以水面寬度增加到2 米,
          故答案為:2 米.
          根據(jù)已知得出直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過把y=﹣1代入拋物線解析式得出水面寬度,即可得出答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖顯示了用計算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.
          下面有三個推斷:
          ①當(dāng)投擲次數(shù)是500時,計算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
          ②隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
          ③若再次用計算機(jī)模擬實驗,則當(dāng)投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
          其中合理的是(
          A.①
          B.②
          C.①②
          D.①③

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=x2﹣bx+1(﹣1≤b≤1),當(dāng)b從﹣1逐漸變化到1的過程中,它所對應(yīng)的拋物線位置也隨之變動.下列關(guān)于拋物線的移動方向的描述中,正確的是(
          A.先往左上方移動,再往左下方移動
          B.先往左下方移動,再往左上方移動
          C.先往右上方移動,再往右下方移動
          D.先往右下方移動,再往右上方移動

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,梯形ABCD中,AD∥BC,對角線AC,DB交于點O,如果SAOD=1,SBOC=3,那么SAOB=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點A(4,0),C(0,﹣4),另有一點B(﹣2,0).

          (1)求一次函數(shù)解析式;
          (2)聯(lián)結(jié)BC,點P是反比例函數(shù)y= 的第一象限圖象上一點,過點P作y軸的垂線PQ,垂足為Q.如果△QPO與△BCO相似,求P點坐標(biāo);
          (3)聯(lián)結(jié)AC,求∠ACB的正弦值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

          (1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
          (2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點H.
          ①求證:BD⊥CF.
          ②當(dāng)AB=2,AD=3 時,求線段BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點A,B,C的坐標(biāo)分別為(1,0),(0,1),(﹣1,0).一個電動玩具從坐標(biāo)原點0出發(fā),第一次跳躍到點P1 . 使得點P1與點O關(guān)于點A成中心對稱;第二次跳躍到點P2 , 使得點P2與點P1關(guān)于點B成中心對稱;第三次跳躍到點P3 , 使得點P3與點P2關(guān)于點C成中心對稱;第四次跳躍到點P4 , 使得點P4與點P3關(guān)于點A成中心對稱;第五次跳躍到點P5 , 使得點P5與點P4關(guān)于點B成中心對稱;…照此規(guī)律重復(fù)下去,則點P7的坐標(biāo)是 , 點P2016的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在下列四個圖案中,既是軸對稱圖形,又是中心對稱圖形是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】“節(jié)能環(huán)保,低碳生活”是我們倡導(dǎo)的一種生活方式,某家電商場計劃用11.8萬元購進(jìn)節(jié)能型電視機(jī)、洗衣機(jī)和空調(diào)共40臺,三種家電的進(jìn)價和售價如表所示:

          價格
          種類

          進(jìn)價
          (元/臺)

          售價
          (元/臺)

          電視機(jī)

          5000

          5500

          洗衣機(jī)

          2000

          2160

          調(diào)

          2400

          2700


          (1)在不超出現(xiàn)有資金的前提下,若購進(jìn)電視機(jī)的數(shù)量和洗衣機(jī)的數(shù)量相同,空調(diào)的數(shù)量不超過電視機(jī)的數(shù)量的3倍.請問商場有哪幾種進(jìn)貨方案?
          (2)在“2012年消費促進(jìn)月”促銷活動期間,商家針對這三種節(jié)能型產(chǎn)品推出“現(xiàn)金每購1000元送50元家電消費券一張、多買多送”的活動.在(1)的條件下,若三種電器在活動期間全部售出,商家預(yù)估最多送出多少張?

          查看答案和解析>>

          同步練習(xí)冊答案