日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線AC∥BD,連結(jié)AB,直線AC、BD把之間的平面分成①、②兩個部分,規(guī)定線上各點不屬于任何部分.當(dāng)動點P落在某個部分時,連結(jié)PA、PB構(gòu)成∠PAC、∠APB、∠PBD三個角.

          (1)當(dāng)動點P落在第①部分時,試說明:∠APB=∠PAC+∠PBD;(提示:過點P作直線與AC平行)
          (2)當(dāng)動點P落在第②部分時,請畫出相應(yīng)的圖形.試探究∠APB、∠PAC、∠PBD之間的數(shù)量關(guān)系,并說明理由.

          (1)作PQ∥AC,則 PQ∥AC∥BD,根據(jù)平行線的性質(zhì)可得∠APQ﹦∠CAP,∠BPQ﹦∠DPB,即可得到∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD;(2)∠APB+∠APC+∠PBD=360°

          解析試題分析:(1)作PQ∥AC,則 PQ∥AC∥BD,根據(jù)平行線的性質(zhì)可得∠APQ﹦∠CAP,∠BPQ﹦∠DPB,即可得到∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD;
          (2)根據(jù)平行線的性質(zhì)可得∠APQ+∠PAC=180°,∠QPB+∠PBD=180°,即可得到結(jié)果.
          (1)作PQ∥AC,則 PQ∥AC∥BD

          ∴∠APQ﹦∠CAP,∠BPQ﹦∠DPB
          ∴∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD
          (2)∠APB+∠APC+∠PBD=360°

          ∵PQ∥AC∥BD 
          ∴∠APQ+∠PAC=180°,∠QPB+∠PBD=180°
          ∴∠APB+∠APC+∠PBD=360°.
          考點:平行線的性質(zhì)
          點評:解題的關(guān)鍵是讀懂題意及圖形,正確作出輔助線,同時熟練掌握兩直線平行,同位角相等,兩直線平行,內(nèi)錯角相等,兩直線平行,同旁內(nèi)角互補.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          28、利用平行線的性質(zhì)探究:
          如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①②③④四個部分,規(guī)定線上各點不屬于任何部分.當(dāng)動點P落在某個部分時,連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個角.當(dāng)動點P落在第①部分時,小明同學(xué)在研究∠PAC、∠APB、∠PBD三個角的數(shù)量關(guān)系時,利用圖<1>,過點P作PQ∥BD,得出結(jié)論:∠APB=∠PAC+∠PBD.請你參考小明的方法解決下列問題:
          (1)當(dāng)動點P落在第②部分時,在圖<2>中畫出圖形,寫出∠PAC、∠APB、∠PBD三個角的數(shù)量關(guān)系;
          (2)當(dāng)動點P落在第③部分時,在圖<3>、圖<4>中畫出圖形,探究∠PAC、∠APB、∠PBD之間的數(shù)量關(guān)系,寫出結(jié)論并選擇其中一種情形加以證明.

          (1)當(dāng)動點P落在第②部分時
          ∠APB=∠PAC+∠PBD

          (2)當(dāng)動點P落在第③部分時(如圖<3>)
          ∠PBD=∠APB+∠PAC

          當(dāng)動點P落在第③部分時(如圖<4>)
          ∠PAC=∠PBD+∠APB

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          27、如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當(dāng)動點P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角)
          (1)當(dāng)動點P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
          (2)當(dāng)動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
          (3)當(dāng)動點P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•桂平市三模)如圖,直線AC∥BD,⊙O與AC和BD分別相切于點A和點B.點M和點N分別是AC和BD上的動點,MN沿AC和BD平移.⊙O的半徑為1,∠1=60°.下列結(jié)論錯誤的是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,直線AC∥BD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當(dāng)動點P落在某個部分時,連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個角. (提示:有公共端點的兩條重合的射線所組成的角是0°)
          (1)當(dāng)動點P落在第①部分時,有∠APB=∠PAC+∠PBD,請說明理由;
          (2)當(dāng)動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?若不成立,試寫出∠PAC、∠APB、∠PBD三個角的等量關(guān)系(無需說明理由);
          (3)當(dāng)動點P在第③部分時,探究∠PAC、∠APB、∠PBD之間的關(guān)系,寫出你發(fā)現(xiàn)的一個結(jié)論并加以說明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當(dāng)動點P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角)
          (1)當(dāng)動點P落在第①部分時,試說明∠APB=∠PAC+∠PBD;
          (2)當(dāng)動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
          (3)當(dāng)動點P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以說明.

          查看答案和解析>>

          同步練習(xí)冊答案