日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 1、  將兩個完全相同的長方形拼成如圖所示的“L”形圖案,判斷△ACF是什么三角形?說明理由。

           

          【答案】

          解:△ACF是等腰直角三角形                             (1分)

          ∵兩個長方形的大小完全相同  ∴ EF=DA  ∠AEF=∠CDA=90° EA=DC

          ∴△AEF≌△CDA   (SAS)                                    (2分)

          ∴ AF=AC  ∠EAF=∠DCA                                           (3分)

          又∵∠DCA+∠DAC=90°∴ ∠EAF+∠DAC=90°

          即 ∠FAC=90°                                  (4分)

          ∴ △ACF為等腰直角三角形   

          【解析】略

           

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          (2013•河南)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
          (1)操作發(fā)現(xiàn)
          如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:
          ①線段DE與AC的位置關(guān)系是
          DE∥AC
          DE∥AC
          ;
          ②設(shè)△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關(guān)系是
          S1=S2
          S1=S2


          (2)猜想論證
          當△DEC繞點C旋轉(zhuǎn)到如圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
          (3)拓展探究
          已知∠ABC=60°,點D是角平分線上一點,BD=CD=4,DE∥AB交BC于點E(如圖4).若在射線BA上存在點F,使S△DCF=S△BDE,請直接寫出相應(yīng)的BF的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          將兩個完全相同的三角板按如圖方式擺放.
          (1)求∠BED的度數(shù);
          (2)已知BC=12,求AE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(河南卷)數(shù)學(解析版) 題型:解答題

          如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.

          (1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn)。當點D恰好落在BC邊上時,填空:線段DE與AC的位置關(guān)系是     ;

          ②設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是     

          (2)猜想論證

          當△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想。

          (3)拓展探究

          已知∠ABC=600,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF =S△BDC,請直接寫出相應(yīng)的BF的長

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          將兩個完全相同的三角板按如圖方式擺放.
          (1)求∠BED的度數(shù);
          (2)已知BC=12,求AE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源:河北省模擬題 題型:解答題

          將兩個完全相同的含有 30°角的直角三角板如圖所示放置,其中∠DAC = 30°,∠ACD=90°,AD = 8,點M為 AC中點,動點E從點C出發(fā)沿CB方向運動到點B停止,連接EM并延長交AD于點 F。
          (1)四邊形ABCD 的面積為________;
          (2)當 CE =_______時,四邊形DCEF為等腰梯形,  當 CE =_______時,四邊形DCEF為直角梯形;
          (3)當∠EMC= 90°時,判斷四邊形DCEF的形狀,并說明理由;
          (4)連接BF,在點 E的運動過程中,是否存在△BEF為等腰三角形?如果存在,求出 CE 的長;如果不存在,說明理由。

          查看答案和解析>>

          同步練習冊答案