【題目】如圖,在平面直角坐標系中,點A的坐標為(m,0),m<0,點B與點A 關(guān)于原點對稱,直線與雙曲線
交于C,D兩點.
(1)直接判斷后填空:四邊形ACBD的形狀一定是 ;
(2)若點D(1,t),求雙曲線的解析式;
(3)在(2)的前提下,四邊形ACBD為矩形時,求m的值.
【答案】(1)平行四邊形;(2);(3)m=-2
【解析】
(1)根據(jù)正、反比例函數(shù)的對稱性即可得出點D、C關(guān)于原點O成中心對稱,再結(jié)合點A與點B關(guān)于坐標原點O成中心對稱,即可得出對角線AB、CD互相平分,由此即可證出四邊形ACBD的是平行四邊形;
(2)由點D的坐標結(jié)合反比例函數(shù)圖象上點的坐標特征即可求出t值,進而得出點A的坐標,代入雙曲線即可求出解析式.
(3)根據(jù)勾股定理得出OD長度,再根據(jù)矩形的性質(zhì)可得出OB=OA=OC=OD=2,得到點A的坐標即可求出m值;
(1)平行四邊形;
(2)將D(1,t)代入中
求得:t= ,D(1,
)
k=xy=1×=
∴反比例函數(shù)解析式是:
(3)由勾股定理求得OD=2,
∵四邊形ACBD為矩形
∴OA=OB=OC=OD=2
∵m<0
∴m=-2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】游泳是一項深受青少年喜愛的體育運動,某中學(xué)為了加強學(xué)生的游泳安全意識,組織學(xué)生觀看了紀實片“孩子,請不要私自下水”,并于觀看后在本校的名學(xué)生中作了抽樣調(diào)查.制作了下面兩個不完整的統(tǒng)計圖.請根據(jù)這兩個統(tǒng)計圖回答以下問題:
(I)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補全兩個統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校名學(xué)生中大約有多少人“結(jié)伴時會下河學(xué)游泳”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐的軸截面是邊長為6cm的正三角形ABC,P是母線AC的中點.則在圓錐的側(cè)面上從B點到P點的最短路線的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個半徑為的圓形紙片在邊長為
的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E為對角線AC上一點,且AECB,連接DE并延長交BC于點G,過點A作AH⊥BE于點H,交BC于點F.以下結(jié)論:①BH
HE;②∠BEG
45°;③△ABF ≌△DCG; ④4BH2
BG·CD.其中正確結(jié)論的個數(shù)是( )
A.1個B.2
C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初級中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生年齡情況,隨機調(diào)查了本校部分學(xué)生的年齡,根據(jù)所調(diào)查的學(xué)生的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的學(xué)生人數(shù)為_______,圖①中 的值為 ;
(2)求統(tǒng)計的這組學(xué)生年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產(chǎn)任務(wù),安排甲、乙兩個大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨立完成60萬只口罩的生產(chǎn)任務(wù)時,甲廠比乙廠少用5天.問至少應(yīng)安排兩個工廠工作多少天才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:坐標平面內(nèi),對于拋物線y=ax2+bx(a≠0),我們把點(﹣,
)稱為該拋物線的焦點,把y=﹣
稱為該拋物線的準線方程.例如,拋物線y=x2+2x的焦點為(﹣1,﹣
),準線方程是y=﹣
.根據(jù)材料,現(xiàn)已知拋物線y=ax2+bx(a≠0)焦點的縱坐標為3,準線方程為y=5,則關(guān)于二次函數(shù)y=ax2+bx的最值情況,下列說法中正確的是( 。
A.最大值為4B.最小值為4
C.最大值為3.5D.最小值為3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D.過點D作DE⊥AD交AB于點E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=6,BC=8,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com