日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)在平面直角坐標系xOy中,將拋物線y=2x2沿y軸向上平移1個單位,再沿x軸向右平移兩個單位,平移后拋物線的頂點坐標記作A,直線x=3與平移后的拋物線相交于B,與直線OA相交于C.
          (1)求△ABC面積;
          (2)點P在平移后拋物線的對稱軸上,如果△ABP與△ABC相似,求所有滿足條件的P點坐標.
          分析:(1)根據(jù)題意可知平移后的函數(shù)的解析式為:y=2(x-2)2+1,可據(jù)此求出其頂點A和B點的坐標,然后用待定系數(shù)法求出直線AO的解析式,即可求出C點的坐標,根據(jù)這三點的坐標即可求出△ABC的面積;
          (2)由于不確定是哪組角對應相等,因此要分兩種情況進行討論:
          ①當∠PBA=∠CBA時,四邊形PACB是平行四邊形,因此PA=BC,由此可求出P點的坐標.
          ②當∠APB=∠BAC時,可根據(jù)關于AP,AB,BC的比例關系式,求出AP的長,進而可求出P的坐標.
          綜上所述即可求出符合條件的P點的坐標.
          解答:精英家教網(wǎng)解:平移后拋物線的解析式為y=2(x-2)2+1.
          ∴A點坐標為(2,1),
          設直線OA解析式為y=kx,將A(2,1)代入
          得k=
          1
          2
          ,直線OA解析式為y=
          1
          2
          x,
          將x=3代入y=
          1
          2
          x
          得y=
          3
          2
          ,
          ∴C點坐標為(3,
          3
          2
          ).
          將x=3代入y=2(x-2)2+1得y=3,
          ∴B點坐標為(3,3).
          ∴S△ABC=
          3
          4


          (2)∵PA∥BC,
          ∴∠PAB=∠ABC
          ①當∠PBA=∠BAC時,PB∥AC,
          ∴四邊形PACB是平行四邊形,
          ∴PA=BC=
          3
          2

          ∴P1(2,
          5
          2
          ).

          ②當∠APB=∠BAC時,
          AP
          AB
          =
          AB
          BC
          ,
          ∴AP=
          AB2
          CB

          又∵AB=
          (3-2)2+(3-1)2
          =
          5

          ∴AP=
          10
          3

          ∴P2(2,1+
          10
          3
          )即P2(2,
          13
          3

          綜上所述滿足條件的P點有(2,
          5
          2
          ),(2,
          13
          3
          ).
          點評:本題考查了二次函數(shù)圖象的平移,圖形面積的求法,相似三角形的判定和性質等知識點,主要考查學生分類討論,數(shù)形結合的數(shù)學思想方法.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          13、在平面直角坐標系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
          4
          個.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          在平面直角坐標系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
          (1)求此拋物線的解析式;
          (2)設此拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標;
          (3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
          (1)求此拋物線的函數(shù)表達式;
          (2)設E是y軸右側拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
          (3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
          2
          ?若存在,求出點M的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          在平面直角坐標系xOy中,已知A(2,-2),B(0,-2),在坐標平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
          5
          5
          個.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標為
          (1,-1),(5,3)或(5,-1)
          (1,-1),(5,3)或(5,-1)

          查看答案和解析>>

          同步練習冊答案