日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①,P為△ABC內(nèi)一點,連接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一個三角形與△ABC相似,那么就稱P為△ABC的自相似點.
          (1)如圖②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中線,過點B作BE丄CD,垂足為E.試說明E是△ABC的自相似點;
          (2)在△ABC中,∠A<∠B<∠C.
          ①如圖③,利用尺規(guī)作出△ABC的自相似點P(寫出作法并保留作圖痕跡);
          ②若△ABC的內(nèi)心P是該三角形的自相似點,求該三角形三個內(nèi)角的度數(shù).

          【答案】分析:(1)根據(jù)已知條件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出結(jié)論;
          (2)①根據(jù)作一角等于已知角即可得出△ABC的自相似點;
          ②根據(jù)∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各內(nèi)角的度數(shù).
          解答:解:(1)在Rt△ABC中,∠ACB=90°,CD是AB上的中線,
          ∴CD=AB,
          ∴CD=BD,
          ∴∠BCE=∠ABC,
          ∵BE⊥CD,∴∠BEC=90°,
          ∴∠BEC=∠ACB,
          ∴△BCE∽△ABC,
          ∴E是△ABC的自相似點;

          (2)①如圖所示,
          作法:①在∠ABC內(nèi),作∠CBD=∠A,
          ②在∠ACB內(nèi),作∠BCE=∠ABC,BD交CE于點P,
          則P為△ABC的自相似點;

          ②∵P是△ABC的內(nèi)心,∴∠PBC=∠ABC,∠PCB=∠ACB,
          ∵△ABC的內(nèi)心P是該三角形的自相似點,
          ∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,
          ∴∠A+2∠A+4∠A=180°,
          ∴∠A=,
          ∴該三角形三個內(nèi)角度數(shù)為:,
          點評:此題主要考查了相似三角形的判定以及三角形的內(nèi)心作法和作一角等于已知角,此題綜合性較強,注意從已知分析獲取正確的信息是解決問題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          12、如圖,點H為△ABC的垂心,以AB為直徑的⊙O1和△BCH的外接圓⊙O2相交于點D,延長AD交CH于點P,
          求證:點P為CH的中點.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•翔安區(qū)一模)如圖,點G為△ABC的重心,連接A、G并延長交BC邊于點D.已知BC=6cm,則BD=
          3
          3
          cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察、猜想、探究:
          在△ABC中,∠ACB=2∠B.
          (1)如圖①,當(dāng)∠C=90°,AD為∠BAC的角平分線時,求證:AB=AC+CD;
          (2)如圖②,當(dāng)∠C≠90°,AD為∠BAC的角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?不需要證明,請直接寫出你的猜想;
          (3)如圖③,當(dāng)AD為△ABC的外角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并對你的猜想給予證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,點G為△ABC重心,DE經(jīng)過點G,DE∥BC,CEF∥AB,S△ABC=18,求四邊形BDEF面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,設(shè)O為△ABC內(nèi)一點,連接AO、BO、CO,并延長交BC、CA、AB于點D、E、F,已知S△AOB:S△BOC:S△AOC=3:4:6.則
          OD
          AO
          OE
          BO
          OF
          CO
          等于(  )

          查看答案和解析>>

          同步練習(xí)冊答案