日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)將正方形ABCD折疊,使頂點A與CD邊上的點M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點G(如圖).
          (1)如果正方形邊長為2,M為CD邊中點.求EM的長.
          (2)如果M為CD邊的中點,求證:DE:DM:EM=3:4:5;
          (3)如果M為CD邊上的任意一點,設AB=2a,問△CMG的周長是否與點M的位置有關?若有關,請把△CMG的周長用含DM的長x的代數(shù)式表示;若無關,請說明理由.
          分析:(1)設DE為x,則根據(jù)折疊知道DM=1,EM=EA=2-x,然后在Rt△DEM中就可以求出x,繼而求出EM的長;
          (2)由(1)可得出DE,DN,EM的長,從而求出它們的比值;
          (3)△CMG的周長與點M的位置無關.設DM=x,DE=y,則CM=2a-x,EM=2a-y,然后利用正方形的性質和折疊可以證明△DEM∽△CMG,利用相似三角形的對應邊成比例可以把CG,MG分別用x,y分別表示,△CMG的周長也用x,y表示,然后在Rt△DEM中根據(jù)勾股定理可以得到4a2-x2=4ay,結合△CMG的周長,就可以判斷△CMG的周長與點M的位置無關.
          解答:證明:(1)DE為x,則DM=1,EM=EA=2-x,
          在Rt△DEM中,∠D=90°,
          ∴DE2+DM2=EM2
          x2+12=(2-x)2
          x=
          3
          4
          ,
          ∴EM=
          5
          4


          (2)設正方形的邊長為2,由(1)知,DE=
          3
          4
          ,DM=1,EM=
          5
          4

          ∴DE:DM:EM=3:4:5;

          (3)△CMG的周長與點M的位置無關.
          證明:設DM=x,DE=y,則CM=2a-x,EM=2a-y,
          ∵∠EMG=90°,
          ∴∠DME+∠CMG=90°.
          ∵∠DME+∠DEM=90°,
          ∴∠DEM=∠CMG,
          又∵∠D=∠C=90°△DEM∽△CMG,
          CG
          DM
          =
          CM
          DE
          =
          MG
          EM
          CG
          x
          =
          2a-x
          y
          =
          MG
          2a-y
          ,
          ∴CG=
          x(2a-x)
          y
          ,MG=
          (2a-x)(2a-y)
          y
          ,
          △CMG的周長為CM+CG+MG=
          4a2-x2
          y

          在Rt△DEM中,DM2+DE2=EM2
          即x2+y2=(2a-y)2
          整理得4a2-x2=4ay,
          ∴CM+MG+CG=
          4ay
          y
          =4a.
          所以△CMG,的周長為4a,與點M的位置無關.
          點評:本題考查翻折變換及正方形的性質,正方形的有些題目有時用代數(shù)的計算證明比用幾何方法簡單,甚至幾何方法不能解決的用代數(shù)方法可以解決.本題綜合考查了相似三角形的應用和正方形性質的應用.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,將正方形ABCD折疊,使點C與點D重合于正方形內(nèi)點P處,折痕分別為AF、BE,如果正方形ABCD的邊長是2,那么△EPF的面積是
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          正方形ABCD的邊長為4,BE∥AC交DC的延長線于E.
          (1)如圖1,連接AE,求△AED的面積.
          (2)如圖2,設P為BE上(異于B、E兩點)的一動點,連接AP、CP,請判斷四邊形APCD的面積與正方形ABCD的面積有怎樣的大小關系?并說明理由.
          (3)如圖3,在點P的運動過程中,過P作PF⊥BC交AC于F,將正方形ABCD折疊,使點D與點F重合,其折線MN與PF的延長線交于點Q,以正方形的BC、BA為x軸、y軸建立平面直角坐標系,設點Q的坐標為(x,y),求y與x之間的函數(shù)關系式.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)將正方形ABCD折疊,使頂點A與CD邊上的點M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點G(如圖).
          (1)如果M為CD邊的中點,求證:DE:DM:EM=3:4:5;
          (2)如果M為CD邊上的任意一點,設AB=2a,問△CMG的周長是否有與點M的位置關系?若有關,請把△CMG的周長用含CM的長x的代數(shù)式表示;若無關,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)將正方形ABCD折疊,使頂點A與CD邊上的點M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點G(如圖).如果DM:MC=3:2,則DE:DM:EM=( 。
          A、7:24:25B、3:4:5C、5:12:13D、8:15:17

          查看答案和解析>>

          同步練習冊答案