日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 將y=
          12
          x+3代入2x+4y=-1后,化簡的結(jié)果是
           
          ,從而求得x的值是
           
          分析:把y=
          1
          2
          x+3代入2x+4y=-1,化簡就能得到4x=-13,繼而求出x的值.
          解答:解:把y=
          1
          2
          x+3代入2x+4y=-1得:4x=-13,
          ∴x=-
          13
          4
          點(diǎn)評:本題考查了二元一次方程組的解法,主要運(yùn)用了代入法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          閱讀材料,解答問題.
          材料:利用解二元一次方程組的代入消元法可解形如
          x2+y2=
          1
          2
          x-y=1
          的方程組.
          如:由(2)得y=x-1,代入(1)消元得到關(guān)于x的方程:x2-x+
          1
          4
          =0,∴x1=x2=
          1
          2

          將x1=x2=
          1
          2
          代入y=x-1得y1=y2=-
          1
          2
          ,∴方程組的解為
          x1=x2=
          1
          2
          y1=y2=-
          1
          2

          請你用代入消元法解方程組
          x+y=2…(1)
          2x2-y2=1…(2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀以下材料:
          若關(guān)于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
          ∴c=-n3-an2-bn=-n(n2+an+b)
          ∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
          上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項c的因數(shù).
          如:∵方程x3+4x2+3x-2=0中常數(shù)項-2的因數(shù)為:±1和±2,
          ∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
          解決下列問題:
          (1)根據(jù)上面的學(xué)習(xí),方程x3+2x2+6x+5=0的整數(shù)解可能
          ±1,±5
          ±1,±5
          ;
          (2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          閱讀以下材料:
          若關(guān)于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
          ∴c=-n3-an2-bn=-n(n2+an+b)
          ∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
          上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項c的因數(shù).
          如:∵方程x3+4x2+3x-2=0中常數(shù)項-2的因數(shù)為:±1和±2,
          ∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
          解決下列問題:
          (1)根據(jù)上面的學(xué)習(xí),方程x3+2x2+6x+5=0的整數(shù)解可能______;
          (2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          將y=
          1
          2
          x+3代入2x+4y=-1后,化簡的結(jié)果是______,從而求得x的值是______.

          查看答案和解析>>

          同步練習(xí)冊答案