日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀以下材料:
          若關(guān)于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
          ∴c=-n3-an2-bn=-n(n2+an+b)
          ∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
          上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項(xiàng)c的因數(shù).
          如:∵方程x3+4x2+3x-2=0中常數(shù)項(xiàng)-2的因數(shù)為:±1和±2,
          ∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
          解決下列問題:
          (1)根據(jù)上面的學(xué)習(xí),方程x3+2x2+6x+5=0的整數(shù)解可能______;
          (2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.
          (1)由閱讀理解可知:該方程如果有整數(shù)解,它只可能是5的因數(shù),而5的因數(shù)只有:±1,±5這四個數(shù).
          故答案為:±1,±5;                                  …(4分)

          (2)∵-2x3+4x2+12x-14=0
          ∴x3-2x2-6x+7=0…(6分)
          ∵方程x3-2x2-6x+7=0中常數(shù)項(xiàng)7的因數(shù)為:±1和±7 …(8分)
          ∴將±1和±7分別代入方程x3-2x2-6x+7=0得:x=1是該方程的整數(shù)解,-1、±7不是方程的整數(shù)解.…(10分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀以下材料:
          若關(guān)于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
          ∴c=-n3-an2-bn=-n(n2+an+b)
          ∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
          上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項(xiàng)c的因數(shù).
          如:∵方程x3+4x2+3x-2=0中常數(shù)項(xiàng)-2的因數(shù)為:±1和±2,
          ∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
          解決下列問題:
          (1)根據(jù)上面的學(xué)習(xí),方程x3+2x2+6x+5=0的整數(shù)解可能
          ±1,±5
          ±1,±5

          (2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          閱讀以下材料:
          若關(guān)于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
          ∴c=-n3-an2-bn=-n(n2+an+b)
          ∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
          上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項(xiàng)c的因數(shù).
          如:∵方程x3+4x2+3x-2=0中常數(shù)項(xiàng)-2的因數(shù)為:±1和±2,
          ∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
          解決下列問題:
          (1)根據(jù)上面的學(xué)習(xí),方程x3+2x2+6x+5=0的整數(shù)解可能______;
          (2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省某校九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀以下材料:
          若關(guān)于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
          ∴c=-n3-an2-bn=-n(n2+an+b)
          ∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
          上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項(xiàng)c的因數(shù).
          如:∵方程x3+4x2+3x-2=0中常數(shù)項(xiàng)-2的因數(shù)為:±1和±2,
          ∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
          解決下列問題:
          (1)根據(jù)上面的學(xué)習(xí),方程x3+2x2+6x+5=0的整數(shù)解可能______;
          (2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省揚(yáng)州市邗江區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀以下材料:
          若關(guān)于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
          ∴c=-n3-an2-bn=-n(n2+an+b)
          ∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
          上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項(xiàng)c的因數(shù).
          如:∵方程x3+4x2+3x-2=0中常數(shù)項(xiàng)-2的因數(shù)為:±1和±2,
          ∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
          解決下列問題:
          (1)根據(jù)上面的學(xué)習(xí),方程x3+2x2+6x+5=0的整數(shù)解可能______;
          (2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案