日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標系xOy中,已知點A(-1,0),B(0,1),C(2,).
          (Ⅰ)直線l:y=kx+b過A、B兩點,求k、b的值;
          (Ⅱ)求過A、B、C三點的拋物線Q的解析式;
          (Ⅲ)設(shè)(Ⅱ)中的拋物線Q的對稱軸與x軸相交于點E,那么在對稱軸上是否存在點F,使⊙F與直線l和x軸同時相切?若存在,求出點F的坐標;若不存在,請說明理由.
          【答案】分析:(1)直線l:y=kx+b過A、B兩點,把這兩點的坐標代入函數(shù)解析式,就可以得到關(guān)于k,b的方程組,就可以求出k,b的值.
          (2)A、B、C三點的坐標已知,根據(jù)待定系數(shù)法就可以求出函數(shù)的解析式.
          (3)對稱軸上是否存在點F,使⊙F與直線l和x軸同時相切,應(yīng)分F在x軸的上方和下方兩種情況進行討論.當F在x軸的上方時,設(shè)直線l與x軸的交點是P,則PF是三角形MPE的角平分線,根據(jù)三角形角平分線的性質(zhì)就可以求出F的坐標.
          當F在x軸的下方時,△MNF為等腰直角三角形.根據(jù)等腰直角三角形的性質(zhì)就可以求出F點的坐標.
          解答:解:(Ⅰ)∵直線y=kx+b過A、B兩點,
          (1分)
          解這個方程組,
          得k=1,b=1.(2分)

          (Ⅱ)設(shè)拋物線的解析式為y=ax2+bx+c,
          則有:(3分)
          解這個方程組,

          ∴拋物線的解析式為y=-x2+x+1.(4分)

          (Ⅲ)存在⊙F與直線l和x軸同時相切.
          易知拋物線Q的對稱軸為x=2,(5分)
          ①當圓心F在x軸的上方時,
          設(shè)點F的坐標為(2,y),把x=2代入y=x+1,
          得y=3.
          ∴拋物線Q的對稱軸與直線l的交點為M(2,3).(6分)
          ∴EF=y,ME=3,MF=ME-EF=3-y.(7分)
          由直線l:y=x+1知,
          ∠NMF=45度.
          ∴△MNF是等腰直角三角形
          ∴MF=NF=EF
          ∴3-y=y
          ∴y=3-3
          ∴點F的坐標為(2,3-3).(8分)
          ②當圓心F在x軸的下方時,設(shè)點F的坐標為(2,y),則MF=3-y,F(xiàn)E=-y
          由△MNF為等腰直角三角形,得3-y=y,(9分)
          ∴y=-3-3
          ∴點F的坐標為(2,-3-3).(10分)
          點評:本題主要考查了待定系數(shù)法求函數(shù)的解析式.利用數(shù)形結(jié)合的方法解決本題,理解圖形中圓與直線的關(guān)系是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          13、在平面直角坐標系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
          4
          個.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
          (1)求此拋物線的解析式;
          (2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標;
          (3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
          (1)求此拋物線的函數(shù)表達式;
          (2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
          (3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
          2
          ?若存在,求出點M的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標系xOy中,已知A(2,-2),B(0,-2),在坐標平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
          5
          5
          個.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標為
          (1,-1),(5,3)或(5,-1)
          (1,-1),(5,3)或(5,-1)

          查看答案和解析>>

          同步練習(xí)冊答案