日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),在反比例函數(shù)的圖象上運(yùn)動,且始終保持線段的長度不變.為線段的中點(diǎn),連接.則線段長度的最小值是_____(用含的代數(shù)式表示)

          【答案】

          【解析】

          如圖,當(dāng)OMAB時,線段OM長度的最。紫茸C明點(diǎn)A與點(diǎn)B關(guān)于直線y=x對稱,因為點(diǎn)A,B在反比例函數(shù)的圖象上,AB=4,所以可以假設(shè)Am,),則Bm+4,-4),則有=,解得k=m2+4m,推出Am,m+4),Bm+4,m),可得Mm+2m+2),求出OM即可解決問題.

          如圖,當(dāng)時,線段長度的最小,

          為線段的中點(diǎn),

          ,

          ∵點(diǎn)在反比例函數(shù)的圖象上,

          ∴點(diǎn)與點(diǎn)關(guān)于直線對稱,

          ,

          ∴可以假設(shè),則,

          ,

          解得,

          ,

          ,

          的最小值為

          故答案為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市生物和地理會考的考試結(jié)果以等級形式呈現(xiàn),分A、B、C、D四個等級.某校八年級學(xué)生參加生物會考后,隨機(jī)抽取部分學(xué)生的生物成績進(jìn)行統(tǒng)計,繪制成如下兩幅不完整的統(tǒng)計圖.

          1)這次抽樣調(diào)查共抽取了 名學(xué)生的生物成績.扇形統(tǒng)計圖中,D等級所對應(yīng)的扇形圓心角度數(shù)為 °;

          2)將條形統(tǒng)計圖補(bǔ)充完整;

          3)若該校八年級有400名學(xué)生,估計這次考試有多少名學(xué)生的生物成績等級為D級?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形中,點(diǎn)為射線上一動點(diǎn),將沿折疊,得到恰好落在射線上,則的長為________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某超市要進(jìn)一批雞蛋進(jìn)行銷售,有、兩家農(nóng)場可供貨.為了比較兩家提供的雞蛋單個大小,超市分別對這兩家農(nóng)場的雞蛋進(jìn)行抽樣檢測,通過分析數(shù)據(jù)確定雞蛋的供貨商.

          1)下列抽樣方式比較合理的是哪一種?請簡述原因.

          ①分別從、兩家提供的一箱雞蛋中拿出最上面的兩層(共40枚)雞蛋,并分別稱出其中每一個雞蛋的質(zhì)量.

          ②分別從、兩家提供的一箱雞蛋中每一層隨機(jī)抽4枚(共40枚)雞蛋,并分別稱出其中每個雞蛋的質(zhì)量.

          2)在用合理的方法抽出兩家提供的雞蛋各40枚后,分別稱出每個雞蛋的質(zhì)量(單位:),結(jié)果如表所示(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn)).

          4547

          4749

          4951

          5153

          5355

          農(nóng)場雞蛋

          2

          8

          15

          10

          5

          農(nóng)場雞蛋

          4

          6

          12

          14

          4

          ①如果從這兩家農(nóng)場提供的雞蛋中隨機(jī)拿一個,分別估計兩家雞蛋質(zhì)量在(單位:)范圍內(nèi)的概率(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn));

          ②如果你是超市經(jīng)營者,試通過數(shù)據(jù)分析確定選擇哪家農(nóng)場提供的雞蛋.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某公園內(nèi)有一座古塔AB,在塔的北面有一棟建筑物,某日上午9時太陽光線與水平面的夾角為32°,此時塔在建筑物的墻上留下了高3米的影子CD.中午12時太陽光線與地面的夾角為45°,此時塔尖A在地面上的影子E與墻角C的距離為15米(B、EC在一條直線上),求塔AB的高度.(結(jié)果精確到0.01米)

          參考數(shù)據(jù):sin32°≈0.5299cos32°≈0.8480,tan32°≈0.6249

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線上的一個動點(diǎn),點(diǎn)的橫坐標(biāo)為

          (1)求此拋物線的表達(dá)式;

          (2)過點(diǎn)軸,垂足為點(diǎn),于點(diǎn).試探究點(diǎn)P在運(yùn)動過程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請求出此時點(diǎn)的坐標(biāo),若不存在,請說明理由;

          (3)過點(diǎn),垂足為點(diǎn).請用含的代數(shù)式表示線段的長,并求出當(dāng)為何值時有最大值,最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線,是常數(shù),且),經(jīng)過點(diǎn),與軸交于點(diǎn).

          (Ⅰ)求拋物線的解析式;

          (Ⅱ)若點(diǎn)是射線上一點(diǎn),過點(diǎn)軸的垂線,垂足為點(diǎn),交拋物線于點(diǎn),設(shè)點(diǎn)橫坐標(biāo)為,線段的長為,求出之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量的取值范圍;

          (Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)在線段上時,設(shè),已知是以為未知數(shù)的一元二次方程為常數(shù))的兩個實(shí)數(shù)根,點(diǎn)在拋物線上,連接,,,且平分,求出值及點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

          托勒密定理:

          托勒密(Ptolemy)(公元90年~公元168年),希臘著名的天文學(xué)家,他的要著作《天文學(xué)大成》被后人稱為偉大的數(shù)學(xué)書,托勒密有時把它叫作《數(shù)學(xué)文集》,托勒密從書中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.

          托勒密定理:

          圓內(nèi)接四邊形中,兩條對角線的乘積等于兩組對邊乘積之和.

          已知:如圖1,四邊形ABCD內(nèi)接于⊙O,

          求證:ABCD+BCADACBD

          下面是該結(jié)論的證明過程:

          證明:如圖2,作∠BAE=∠CAD,交BD于點(diǎn)E

          ∴∠ABE=∠ACD

          ∴△ABE∽△ACD

          ABCDACBE

          ∴∠ACB=∠ADE(依據(jù)1

          ∵∠BAE=∠CAD

          ∴∠BAE+EAC=∠CAD+EAC

          即∠BAC=∠EAD

          ∴△ABC∽△AED(依據(jù)2

          ADBCACED

          ABCD+ADBCACBE+ED

          ABCD+ADBCACBD

          任務(wù):(1)上述證明過程中的依據(jù)1”依據(jù)2”分別是指什么?

          2)當(dāng)圓內(nèi)接四邊形ABCD是矩形時,托勒密定理就是我們非常熟知的一個定理:   

          (請寫出)

          3)如圖3,四邊形ABCD內(nèi)接于⊙O,AB3,AD5,∠BAD60°,點(diǎn)C的中點(diǎn),求AC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,點(diǎn)E在對角線AC上,點(diǎn)F在邊CD上,連接BEEF.若∠EFC90°+CBE,BE7EF10.則點(diǎn)DEF的距離為_____

          查看答案和解析>>

          同步練習(xí)冊答案