日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點A,B,C,D,E在⊙O上,AB⊥CB于點B,tanD=3,BC=2,H為CE延長線上一點,且AH= ,CH=5

          (1)求證:AH是⊙O的切線;
          (2)若點D是弧CE的中點,且AD交CE于點F,求證:HF=HA;
          (3)在(2)的條件下,求EF的長.

          【答案】
          (1)證明:如圖1所示:連接AC.

          ∵AB⊥CB,

          ∴AC是圓O的直徑.

          ∵∠C=∠D,

          ∴tanC=3.

          ∴AB=3BC=3×2=6.

          在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=40.

          又∵AH2=10,CH2=50,

          ∴AC2+AH2=CH2

          ∴△ACH為直角三角形.

          ∴AC⊥AH.

          ∴AH是圓O的切線.


          (2)解:如圖2所示:連接DE、BE.

          ∵AH是圓O的切線,

          ∴∠ABD=∠HAD.

          ∵D是 的中點,

          ∴∠CED=∠EBD.

          又∵∠ABE=∠ADE,

          ∴∠ABE+∠EBD=∠ADE+∠CED.

          ∴∠ABD=∠AFE.

          ∴∠HAF=∠AFH.

          ∴AH=HF.


          (3)解:由切割線定理可知:AH2=EHCH,即( 2=5 EH.

          解得:EH=

          ∵由(2)可知AF=FH=

          ∴EF=FH﹣EH=


          【解析】(1)連接AC.由AB⊥BC可知AC是圓O的直徑,由同弧所對的圓周角相等可知∠C=∠D,于是得到tanC=3,故此可知AB=6,在Rt△ABC中,由勾股定理得:AC2=40,從而可得到AC2+AH2=CH2 , 由勾股定理的逆定理可知AC⊥AH,故此可知AH是圓O的切線;(2)連接DE、BE.由弦切角定理可知∠ABD=∠HAD,由D是 的中點,可證明∠CED=∠EBD,由同弧所對的圓周角相等可知∠ABE=∠ADE,結(jié)合三角形的外角的性質(zhì)可證明:∠HAF=∠AFH,故此AH=HF;(3)由切割線定理可求得EH= ,由(2)可知AF=FH= ,從而得到EF=FH﹣EH=

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,水平放置的圓柱形排水管的截面半徑為10cm,截面中有水部分弓形高為5cm,則水面寬AB為cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題:已知△ABC中,∠ABC=∠ACB=α,點D是AB邊上任意一點,連結(jié)CD,在CD的上測作以CD為底邊,α為底角的等腰△CDE,連結(jié)AE,試探究BD與AE的數(shù)量關(guān)系.
          (1)嘗試探究如圖1,當(dāng)α=60°時,小聰同學(xué)猜想有BD=AE,以下是他的思路呈現(xiàn).請你根據(jù)他的思路把這個證明過程完整地表達出來;


          (2)特例再探如圖2,當(dāng)α=45°時,請你判斷線段BD與AE之間的數(shù)量關(guān)系,并進行證明;

          (3)問題解決如圖3,當(dāng)α為任意銳角時,請直接寫出線段BD與AE的數(shù)量關(guān)系是 . (用含α的式子表示,其中0°<α<90°)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】平面上有3個點的坐標(biāo):A(0,﹣3),B(3,0),C(﹣1,﹣4).
          (1)在A,B,C三個點中任取一個點,這個點既在直線y1=x﹣3上又在拋物線上y2=x2﹣2x﹣3上的概率是多少?
          (2)從A,B,C三個點中任取兩個點,求兩點都落在拋物線y2=x2﹣2x﹣3上的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB,點A、B均在小正方形的頂點上.
          (1)在方格紙中畫出以AB為一邊的直角△ABC,點C在小正方形的頂點上,且△ABC的面積為3.
          (2)在方格紙中將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后△DEC(點A與點D對應(yīng),點B與點E對應(yīng)),請直接寫出點A繞著點C旋轉(zhuǎn)的路徑長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在菱形ABCD中,∠A=60°,AB=4 ,點P在菱形內(nèi),若PB=PD=4,則∠PDC的度數(shù)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
          (1)求證:四邊形ABCD是平行四邊形;
          (2)求證:OA2=OEOF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,小明晚上由路燈A下的點B處走到點C處時,測得自身影子CD的長為1米,他繼續(xù)往前走3米到達點E處(即CE=3米),測得自己影子EF的長為2米,已知小明的身高是1.5米,那么路燈A的高度AB是(
          A.4.5米
          B.6米
          C.7.2米
          D.8米

          查看答案和解析>>

          同步練習(xí)冊答案