日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,□ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分BADBC于點(diǎn)E,且∠ADC60°,ABBC,連接OE.下列結(jié)論:①AECE;②SABCABAC;③SABE2SAOE;④OEBC,成立的個(gè)數(shù)有(

          A.1個(gè)B.2個(gè)C.3個(gè)D.4

          【答案】C

          【解析】

          利用平行四邊形的性質(zhì)可得∠ABC=ADC=60°,∠BAD=120°,利用角平分線的性質(zhì)證明ABE是等邊三角形,然后推出AE=BE=BC,再結(jié)合等腰三角形的性質(zhì):等邊對(duì)等角、三線合一進(jìn)行推理即可.

          ∵四邊形ABCD是平行四邊形,


          ∴∠ABC=ADC=60°,∠BAD=120°,
          AE平分∠BAD,
          ∴∠BAE=EAD=60°
          ∴△ABE是等邊三角形,
          AE=AB=BE,∠AEB=60°,
          AB=BC,
          AE=BE=BC
          AE=CE,故①正確;
          ∴∠EAC=ACE=30°
          ∴∠BAC=90°,
          SABC=ABAC,故②錯(cuò)誤;
          BE=EC,
          EBC中點(diǎn),O為AC中點(diǎn),
          SABE=SACE=2 SAOE,故③正確;
          ∵四邊形ABCD是平行四邊形,
          AC=CO
          AE=CE,
          EOAC,
          ∵∠ACE=30°
          EO=EC,
          EC=AB
          OE=BC,故④正確;
          故正確的個(gè)數(shù)為3個(gè),
          故選:C

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某服裝店老板到廠家購(gòu)甲、乙兩種品牌的服裝,若購(gòu)甲種品牌服裝10件,乙種品牌服裝9件,需要1800元;若購(gòu)進(jìn)甲種品牌服裝8件,乙種品牌服裝18件,需要2520元.

          (1)求甲、乙兩種品牌的服裝每件分別為多少元?

          (2)若銷(xiāo)售一件甲種品牌服裝可獲利18元,銷(xiāo)售一件乙種品牌服裝可獲利30元,根據(jù)市場(chǎng)需要,服裝店老板決定:購(gòu)進(jìn)甲種品牌服裝的數(shù)量要比購(gòu)進(jìn)乙種品牌服裝的數(shù)量的2倍還多4件,且甲種品牌服裝最多可購(gòu)進(jìn)28件,這樣服裝全部售出后可使總的獲利不少于732元,問(wèn)有幾種進(jìn)貨方案?并寫(xiě)出進(jìn)貨方案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某貨船以24海里/時(shí)的速度將一批重要物資從處運(yùn)往正東方向的M處,在點(diǎn)處測(cè)得某島在北偏東的方向上.該貨船航行分鐘后到達(dá)處,此時(shí)再測(cè)得該島在北偏東的方向上,已知在島周?chē)?/span>海里的區(qū)域內(nèi)有暗礁.若繼續(xù)向正東方向航行,該貨船有無(wú)觸礁危險(xiǎn)?試說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD和四邊形ACED都是平行四邊形,點(diǎn)RDE的中點(diǎn),BR分別交AC、CD于點(diǎn)P、Q.

          (1)請(qǐng)寫(xiě)出圖中各對(duì)相似三角形(相似比為1除外);

          (2)求BP:PQ:QR.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開(kāi)始時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力y隨時(shí)間t(分鐘)的變化規(guī)律有如下關(guān)系式: y值越大表示接受能力越強(qiáng))

          (1)講課開(kāi)始后第5分鐘時(shí)與講課開(kāi)始后第25分鐘時(shí)比較,何時(shí)學(xué)生的注意力更集中;

          (2)講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中能持續(xù)多少分鐘;

          (3)一道數(shù)學(xué)難題,需要講解24分鐘,為了效果較好,要求學(xué)生的注意力最低達(dá)到180,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)ORtABC斜邊AB上的一點(diǎn),以OA為半徑的⊙OBC相切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.

          (1)求證:AD平分∠BAC;

          (2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留π).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線l是四邊形ABCD的對(duì)稱軸.若ADBC,則下列結(jié)論:(1ABCD;(2AB=BC;(3BD平分∠ABC;(4AO=CO.其中正確的有______(填序號(hào)).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)B、F、C、E在直線l上(FC之間不能直接測(cè)量),點(diǎn)A、Dl異側(cè),測(cè)得ABDE,ABDE,AD

          (1)求證:△ABC≌△DEF;

          (2)BE=10mBF=3m,求FC的長(zhǎng)度

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線ABCD相交于點(diǎn)O,OE平分∠BOD,AOC=70°,DOF=90°.

          (1)圖中與∠EOF互余的角是     ;

          (2)求∠EOF的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案