日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】小劉對(duì)本班同學(xué)的業(yè)余興趣愛好進(jìn)行了一次調(diào)查,她根據(jù)采集到的數(shù)據(jù),繪制了下面的圖1和圖2.

          請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:

          (1)在圖1中,將書畫部分的圖形補(bǔ)充完整;

          (2)在圖2中,求出球類部分所對(duì)應(yīng)的圓心角的度數(shù),并分別寫出愛好音樂”、“書畫”、“其它的人數(shù)占本班學(xué)生數(shù)的百分?jǐn)?shù);

          (3)觀察圖1和圖2,你能得出哪些結(jié)論(只要寫出一條結(jié)論).

          【答案】(1)補(bǔ)圖見解析;(2)“球類”126°;音樂30%,書畫25%,其它10%;(3)喜歡球類的人數(shù)最多.

          【解析】由圖可知:(1)該班的總?cè)藬?shù)為14÷35%=40人,則喜歡書畫類的有40﹣14﹣12﹣4=10人;

          2球類部分所對(duì)應(yīng)的圓心角的度數(shù)360°×35%=126°;音樂所占的百分比為12÷40=30%,書畫所占的百分比為10÷40=25%,其它所占的百分比為4÷40=10%;

          3)結(jié)論:喜歡球類的人數(shù)最多.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=k為常數(shù),且k≠0)的圖象交于A1,a),B兩點(diǎn).

          1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

          2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及PAB的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,用正方形是墩壘石梯,下圖分別表示壘到一、二階梯時(shí)的情況,那么照這樣壘下去

          一級(jí) 二級(jí)

          ①填出下表中未填的兩空,觀察規(guī)律。

          階梯級(jí)數(shù)

          一級(jí)

          二級(jí)

          三級(jí)

          四級(jí)

          石墩塊數(shù)

          3

          9

          ②到第n級(jí)階梯時(shí),共用正方體石墩_______________塊(用n的代數(shù)式表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了了解某校學(xué)生的課外閱讀情況,隨機(jī)抽查了名學(xué)生周閱讀用時(shí)數(shù),結(jié)果如下表:

          周閱讀用時(shí)數(shù)(小時(shí))

          4

          5

          8

          12

          學(xué)生人數(shù)()

          3

          4

          2

          1

          則關(guān)于這名學(xué)生周閱讀所用時(shí)間,下列說法正確的是( )

          A. 中位數(shù)是B. 眾數(shù)是C. 平均數(shù)是D. 方差是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解方程

          1

          2

          3

          4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算:

          1)﹣0.5+3+2.65+1.15;

          2)﹣81÷|2|×÷(﹣16);

          3)(﹣23+(﹣12÷+)×(﹣18).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD

          OEAB,

          ∴∠COE=CAD,EOD=ODA,

          OA=OD,

          ∴∠OAD=ODA

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB,

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,Pl上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對(duì)于下列各值:

          線段MN的長(zhǎng);

          ②△PAB的周長(zhǎng);

          ③△PMN的面積;

          直線MN,AB之間的距離;

          ⑤∠APB的大。

          其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )

          A. ②③ B. ②⑤ C. ①③④ D. ④⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,AB=6,EBC邊的中點(diǎn),FCD邊上的一點(diǎn),且DF=2,若MN分別是線段AD、AE上的動(dòng)點(diǎn),則MN+MF的最小值為   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案