【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉得到△ADE,連接BD,CE交于點F,BD交AE于M.
(1)求證:△AEC≌△ADB;
(2)若BC=2,∠BAC=30°,當四邊形ADFC是菱形時,求BF的長.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)由旋轉的性質得到△ABC≌△ADE,,然后根據全等三角形的性質求出AE=AD,AC=AB,∠BAC=∠DAE,最后可根據“SAS”證得結論;
(2)過點B作BM⊥EC于點M,然后根據菱形的性質可得AC∥DF,再根據平行線的性質得到∠DBA=∠BAC=45°,從而得到△ABD是等腰直角三角形,利用勾股定理可求BD,最后根據線段的計算求解得到BF的長.
試題解析:(1)由旋轉的性質得:△ABC≌△ADE,且AB=AC,
∴AE=AD,AC=AB,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,
∴△AEC≌△ADB(SAS);
(2)過點B作BM⊥EC于點M,∵∠BAC=30°AB=AC,
∴∠ABC=∠ACB=75°.
∵當四邊形ADFC是菱形時,AC∥DF,
∴∠FBA=∠BAC=30°,
∵AB=AD,∴∠ADB=∠ABD=30°,
∴∠ACE=∠ADB=30°,∴∠FCB=45°.
∵BM⊥EC,∴∠MBC=45°,
∴BM=MC=BCsin45°=×2=
,
∵∠ABC=75°,∠ABD=30°,∠FCB=45°
∴∠BFC=180°-75°-45°-30°=30°,
∴BF=2BM=2.
科目:初中數學 來源: 題型:
【題目】為豐富學生課外活動,某校積極開展社團活動,學生可根據自己的愛好選擇一項,已知該校開設的體育社團有:A:籃球,B:排球C:足球;D:羽毛球,E:乒乓球.李老師對某年級同學選擇體育社團情況進行調查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結論不正確的是( )
A.選科目E的有5人
B.選科目D的扇形圓心角是72°
C.選科目A的人數占體育社團人數的一半
D.選科目B的扇形圓心角比選科目D的扇形圓心角的度數少21.6°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,菱形花壇ABCD周長是80m,∠ABC=60°,沿著菱形的對角線修建了兩條小路AC和BD,相交于O點.
(1)求兩條小路的長AC、BD.(結果可用根號表示)
(2)求花壇的面積.(結果可用根號表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以A、B為圓心,大于AB的長為半徑畫弧,兩弧相交于點M、N;②作直線MN交AC于點D,連接BD.若CD=CB,∠A=35°,則∠C等于( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店以40元/千克的進價購進一批茶葉,經調查發(fā)現,在一段時間內,銷售量 (千克)與銷售價
(元/千克)成一次函數關系,其圖象如圖所示.
(1)求與
之間的函數關系式(不必寫出自變量
的取值范圍);
(2)若該商店銷售這批茶葉的成本不超過2800元,則它的最低銷售價應定為多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com