日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在正方形網(wǎng)格中以點A為圓心,AB為半徑作圓A交網(wǎng)格于點C(如圖(1)),過點C作圓的切線交網(wǎng)格于點D,以點A為圓心,AD為半徑作圓交網(wǎng)格于點E(如圖(2)). 問題:

          (1)求∠ABC的度數(shù);
          (2)求證:△AEB≌△ADC;
          (3)△AEB可以看作是由△ADC經(jīng)過怎樣的變換得到的?并判斷△AED的形狀(不用說明理由).
          (4)如圖(3),已知直線a,b,c,且a∥b,b∥c,在圖中用直尺、三角板、圓規(guī)畫等邊三角形A′B′C′,使三個頂點A′,B′,C′,分別在直線a,b,c上.要求寫出簡要的畫圖過程,不需要說明理由.

          【答案】
          (1)解:連接BC,由網(wǎng)格可知點C在AB的中垂線上,

          ∴AC=BC,

          ∵AB=AC,∴AB=BC=AC,即△ABC是等邊三角形.

          ∴∠ABC=60°;


          (2)解:∵CD切⊙A于點C,

          ∴∠ACD=90°∠ABE=∠ACD=90°,

          在Rt△AEB與Rt△ADC中,

          ∵AB=AC,AE=AD.

          ∴Rt△AEB≌Rt△ADC(HL)


          (3)解:△AEB可以看作是由△ADC繞點A順時針旋轉(zhuǎn)60°得到的.

          △AED是等邊三角形


          (4)解:①在直線a上任取一點,記為點A′,作A′M′⊥b,垂足為點M′;②作線段A′M′的垂直平分線,此直線記為直線d;③以點A′為圓心,A′M′長為半徑畫圓,與直線d交于點N′;④過點N′作N′C′⊥A′N′交直線c于點C′,連接A′C′;⑤以點A′為圓心,A′C′長為半徑畫圓,此圓交直線b于點B′;⑥連接A′B′、B′C′,則△A′B′C′為所求等邊三角形
          【解析】(1)連接BC,通過證明△ABC是等邊三角形,即可求出∠ABC的度數(shù);(2)在Rt△AEB與Rt△ADC中,通過HL證明△AEB≌△ADC;(3)由旋轉(zhuǎn)的性質(zhì)即可得出△AED是等邊三角形;(4)利用HL定理可證△A′N′C′≌△A′M′B′,得∠C′A′N′=∠B′A′M′,于是∠B′A′C′=∠M′A′N′=60°,由A′B′=A′C′得△A′B′C′為等邊三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下面我們做一次折疊活動

          第一步,在一張寬為2的矩形紙片的一端利用圖(1)的方法折出一個正方形,然后把紙片展平折痕為MC;

          第二步如圖(2),把這個正方形折成兩個相等的矩形,再把紙片展平,折痕為FA

          第三步,折出內(nèi)側(cè)矩形FACB的對角線AB并將AB折到圖(3)中所示的AD,折痕為AQ

          根據(jù)以上的操作過程,完成下列問題

          1)求CD的長

          2)請判斷四邊形ABQD的形狀并說明你的理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是(  )

          A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF D. ∠A=∠EDF

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算:
          (1)(﹣3)2 +( 1
          (2)(x+1)2﹣2(x﹣2).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知∠ADC=EFC,3=C,可推得∠1=2.理由如下:

          解:因為∠ADC=EFC(已知)

          所以ADEF(   ).

          所以∠1=4(   ),

          因為∠3=C(已知),

          所以ACDG(   ).

          所以∠2=4(   ).

          所以∠1=2(等量代換).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀圖1的情景對話,然后解答問題:
          (1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是命題(填“真”或“假”)
          (2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
          (3)如圖2,AB是⊙O的直徑,C是⊙O上一點(不與點A、B重合),D是半圓 的中點,C、D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點E,使AE=AD,CB=CE. ①求證:△ACE是奇異三角形;
          ②當(dāng)△ACE是直角三角形時,求∠AOC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某面粉加工廠要加工一批小麥,2臺大面粉機和5臺小面粉機同時工作2小時共加工小麥1.1萬斤;3臺大面粉機和2臺小面粉機同時工作5小時共加工小麥3.3萬斤.

          (1)1臺大面粉機和1臺小面粉機每小時各加工小麥多少萬斤?

          (2)該廠現(xiàn)有9.45萬斤小麥需要加工,計劃使用8臺大面粉機和10臺小面粉機同時工作5小時,能否全部加工完?請你幫忙計算一下.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為弘揚敬老愛老傳統(tǒng)美德,某校八年級(1)班的學(xué)生要去距離學(xué)校10km的敬老院看望老人,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車出發(fā),結(jié)果乘汽車的同學(xué)早到10min.已知汽車的速度是騎車學(xué)生的4倍,求騎車學(xué)生的速度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,一個長方形的三個頂點坐標(biāo)分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個頂點的坐標(biāo)( 。

          A. (5,3) B. (3,5) C. (7,3) D. (3,3)

          查看答案和解析>>

          同步練習(xí)冊答案