日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,直線y=-2x+b與y軸交于點A,與x軸交于點D,與雙曲線y=
          kx
          在第一象限交于B、C兩點,且AB•BD=2,則k=
           
          分析:過B分別作x軸和y軸的垂線,E,F(xiàn)分別為垂足,先得到A(0,b),D(
          1
          2
          b,0),即OA=b,OD=
          1
          2
          b;由BF∥OD,可得AF:OA=BF:OD,即有AF:BF=2,若設(shè)B(m,n),m>0,n>0,則BF=m,AF=2m,再由勾股定理分別計算AB2=AF2+BF2=5m2,BD2=BE2+DE2=n2+(
          1
          2
          b-m)2=n2+
          (2m-b) 2
          4
          ,通過B點在直線y=-2x+b上,得到BD2=n2+
          1
          4
          n2=
          5
          4
          n2,根據(jù)AB•BD=2,
          得到m•n=
          4
          5
          ,然后利用點B在雙曲線y=
          k
          x
          的圖象上,即可求出k.
          解答:精英家教網(wǎng)解:過B分別作x軸和y軸的垂線,E,F(xiàn)分別為垂足,如圖,
          對于y=-2x+b,令x=0,y=b;令y=0,x=
          1
          2
          b,
          ∴A(0,b),D(
          1
          2
          b,0),即OA=b,OD=
          1
          2
          b,
          ∵BF∥OD,
          ∴AF:OA=BF:OD,
          ∴AF:BF=2,
          設(shè)B(m,n),m>0,n>0,則BF=m,AF=2m,
          ∴AB2=AF2+BF2=5m2
          BD2=BE2+DE2=n2+(
          1
          2
          b-m)2=n2+
          (2m-b) 2
          4
          ,
          而B點在直線y=-2x+b上,
          ∴n=-2m+b,即2m-b=n,
          ∴BD2=n2+
          1
          4
          n2=
          5
          4
          n2,
          而AB•BD=2,
          ∴5m2
          5
          4
          n2=4,即m•n=
          4
          5
          ,
          ∵點B在雙曲線y=
          k
          x
          的圖象上,
          ∴k=m•n=
          4
          5

          故答案為
          4
          5
          點評:本題考查了點在圖象上,點的坐標(biāo)滿足圖象的解析式.也考查了勾股定理以及代數(shù)式的變形.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,直線y=-2x+6與x軸、y軸分別交于P、Q兩點,把△POQ沿PQ翻折,點O落在R處,則點R的坐標(biāo)是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖,直線y=-2x+2與x軸、y軸分別交于點A、B,以線段AB為直角邊在第一象限內(nèi)作等精英家教網(wǎng)腰直角△ABC,∠BAC=90°,過C作CD⊥x軸,垂足為D.
          (1)求點A、B的坐標(biāo)和AD的長;
          (2)求過B、A、D三點的拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,直線y1=2x與雙曲線y2=
          8x
          相交于點A、E.另一直線y3=x+b與雙曲線交于點A、B,與x、y精英家教網(wǎng)軸分別交于點C、D.直線EB交x軸于點F.
          (1)求A、B兩點的坐標(biāo),并比較線段OA、OB的長短;
          (2)由函數(shù)圖象直接寫出函數(shù)y2>y3>y1的自變量x的取值范圍;
          (3)求證:△COD∽△CBF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,直線y=-2x+8與兩坐標(biāo)軸分別交于P,Q兩點,在線段PQ上有一點A,過點A分別作兩坐標(biāo)軸的垂線,垂足分別為B、C.
          (1)若四邊形ABOC的面積為6,求點A的坐標(biāo).
          (2)有人說,當(dāng)四邊形ABOC為正方形時,其面積最大,你認(rèn)為正確嗎?若正確,請給予證明;若錯誤,請舉反例說明.

          查看答案和解析>>

          同步練習(xí)冊答案