日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形OABC是平行四邊形,對角線OBy軸正半軸上,位于第一象限的點A和第二象限的點C分別在雙曲線y1 y2 的一支上,分別過點A、Cx軸的垂線,垂足分別為MN,則有以下的結(jié)論:陰影部分面積是k1k2當(dāng)∠AOC90°時,|k1||k2|;若四邊形OABC是菱形,則兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.其中正確的結(jié)論是_____

          【答案】①②④

          【解析】

          AEy軸于點E,CFy軸于點F,根據(jù)平行四邊形的性質(zhì)得SAOB=SCOB,利用三角形面積公式得到AE=CF,則有OM=ON,再利用反比例函數(shù)k的幾何意義和三角形面積公式得到SAOM=|k1|=OMAM,SCON=|k2|=ONCN,所以有;由SAOM=|k1|,SCON=|k2|,得到S陰影=SAOM+SCON=(|k1|+|k2|)=(k1-k2);當(dāng)∠AOC=90°,得到四邊形OABC是矩形,由于不能確定OAOC相等,則不能判斷△AOM≌△CNO,所以不能判斷AM=CN,則不能確定|k1|=|k2|;若OABC是菱形,根據(jù)菱形的性質(zhì)得OA=OC,可判斷RtAOMRtCNO,則AM=CN,所以|k1|=|k2|,即k1=-k2,根據(jù)反比例函數(shù)的性質(zhì)得兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.

          AEy軸于E,CFy軸于F,如圖,

          ∵四邊形OABC是平行四邊形,

          SAOB=SCOB,

          AE=CF

          OM=ON,

          SAOM=|k1|=OMAMSCON=|k2|=ONCN,

          ,故①正確;

          SAOM=|k1|,SCON=|k2|,

          S陰影部分=SAOM+SCON=(|k1|+|k2|)

          k1>0,k20

          S陰影部分=(k1-k2),故②正確;

          當(dāng)∠AOC=90°,

          ∴四邊形OABC是矩形,

          ∴不能確定OAOC相等,

          OM=ON

          ∴不能判斷△AOM≌△CNO,

          ∴不能判斷AM=CN,

          ∴不能確定|k1|=|k2|,故③錯誤;

          OABC是菱形,則OA=OC

          OM=ON,

          RtAOMRtCNO

          AM=CN,

          |k1|=|k2|,

          k1=-k2,

          ∴兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱,故④正確,

          故答案為:①②④.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩大型超市為了吸引顧客,都舉行有獎酬賓活動,凡購物滿200元,均可得到一次抽獎的機會,在一個紙盒里裝有2個紅球和2個白球,除顏色外其它都相同,抽獎?wù)咭淮螐闹忻鰞蓚球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如下表).

          甲超市.


          兩 紅

          一紅一白

          兩 白

          禮金券(元)

          20

          50

          20

          乙超市:


          兩 紅

          一紅一白

          兩 白

          禮金券(元)

          50

          20

          50

          1】(1)用樹狀圖表示得到一次摸獎機會時中禮金券的所有情況;

          2】(2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】原來公園有一個半徑為 1 m 的苗圃,現(xiàn)在準備擴大面積,設(shè)當(dāng)擴大后的半徑為x m,則增加的環(huán)形的面積為y m 2 .

          (1)寫出yx的函數(shù)關(guān)系式;

          (2)當(dāng)半徑增大到多少時面積增大1倍;

          (3)試猜測半徑是多少時,面積是原來的3、4、5、….

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的一元二次方程kx2+2x﹣1=0有實數(shù)根,

          (1)求k的取值范圍;

          (2)當(dāng)k=2時,請用配方法解此方程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,∠ACB90°,sinA,BC8,點DAB的中點,過點BCD的垂線,垂足為點E.

          (1)求線段CD的長;

          (2)cosABE的值。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線yx+b分別交x軸、y軸于點A、C,點P是直線AC與雙曲線y在第一象限內(nèi)的交點,PBx軸,垂足為點B,且OB2,PB4

          1)求反比例函數(shù)的解析式;

          2)求△APB的面積;

          3)求在第一象限內(nèi),當(dāng)x取何值時一次函數(shù)的值小于反比例函數(shù)的值?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】碭山酥梨是一種馳名中外的特色水果,它是梨的一種,因為出產(chǎn)于碭山縣而得名。現(xiàn)有20筐碭山酥梨,以每筐25千克的質(zhì)量為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

          (1)20筐碭山酥梨中,最重的一筐比最輕的一筐重多少千克?

          (2)與標準質(zhì)量比較,這20筐碭山酥梨總計超過或不足多少千克?

          (3)若碭山酥梨每千克售價4元,則這20筐碭山酥梨可賣多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx﹣5x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.

          (1)求拋物線的函數(shù)表達式;

          (2)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別相交于點F,G,試探究當(dāng)點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標;

          (3)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.

          (1)求證:AE=BF;

          (2)連接GB,EF,求證:GB∥EF;

          (3)若AE=1,EB=2,求DG的長.

          查看答案和解析>>

          同步練習(xí)冊答案