【題目】如圖,在矩形中,
,過點(diǎn)
作
于點(diǎn)
,延長
交
于點(diǎn)
,連接
,若
,線段
的長為__________.
【答案】
【解析】
由直角三角形的性質(zhì)得出AD=CD,EF=
CF,CD=
CF,設(shè)CF=x,則AB=CD=
,BC=AD=
CD=3x,得出BF=BC-CF=3x-x=2x,在Rt△ABF中,由勾股定理可得(
)2+(2x)2=(
)2,解得x=
,得出CF=
,EF=
,AD=3
,證明△ADE∽△CFE,得出
,即可得出答案.
解:∵四邊形ABCD是矩形,
∴AD∥BC,∠ADC=∠B=∠BCD=90°,AB=CD,AD=BC,AD∥BC,
∴∠DAC=∠ACB=30°,
∴AD=CD,∠DCE=60°,
∵DF⊥AC,
∴EF=CF,∠CDF=30°,
∴CD=CF,
設(shè)CF=x,則AB=CD=,BC=AD=
CD=3x,
∴BF=BC-CF=3x-x=2x,
在Rt△ABF中,由勾股定理得:(x)2+(2x)2=(
)2,
解得:x=,
∴CF=,EF=
,AD=3
,
∵AD∥BC,
∴△ADE∽△CFE,
∴,即
,
∴DE=;
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A,B的坐標(biāo),并根據(jù)該函數(shù)圖象寫出y≥0時(shí)x的取值范圍;
(2)把點(diǎn)B向上平移m個單位得點(diǎn)B1.若點(diǎn)B1向左平移n個單位,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n+6)個單位,將與該二次函數(shù)圖象上的點(diǎn)B3重合.已知m>0,n>0,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租貿(mào)公司共有汽車50輛,市場調(diào)查表明,當(dāng)租金為每輛每日200元時(shí)可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.
(1)當(dāng)租金提高多少元時(shí),公司的每日收益可達(dá)到10120元?
(2)公司領(lǐng)導(dǎo)希望日收益達(dá)到10160元,你認(rèn)為能否實(shí)現(xiàn)?若能,求出此時(shí)的租金,若不能,請說明理由,
(3)汽車日常維護(hù)要定費(fèi)用,已知外租車輛每日維護(hù)費(fèi)為100元未租出的車輛維護(hù)費(fèi)為50元,當(dāng)租金為多少元時(shí),公司的利潤恰好為5500元?(利潤=收益﹣維護(hù)費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一次函數(shù)y=kx﹣6(k≠0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(4,b).
(1)b= ;k= ;
(2)點(diǎn)C是線段AB上一點(diǎn),過點(diǎn)C且平行于y軸的直線l交該反比例函數(shù)的圖象于點(diǎn)D,連接OC,OD,BD,若四邊形OCBD的面積S四邊形OCBD=,求點(diǎn)C的坐標(biāo);
(3)將第(2)小題中的△OCD沿射線AB方向平移一定的距離后,得到△O'C'D',若點(diǎn)O的對應(yīng)點(diǎn)O'恰好落在該反比例函數(shù)圖象上(如圖2),求此時(shí)點(diǎn)D的對應(yīng)點(diǎn)D'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車行銷售甲、乙兩種品牌的自行車,若購進(jìn)甲品牌自行車5輛,乙品牌自行車6輛,需要進(jìn)貨款9500元,若購進(jìn)甲品牌自行車3輛,乙品牌自行車2輛,需要進(jìn)貨款4500元.
(1)求甲、乙兩種品牌自行車每輛進(jìn)貨價(jià)分別為多少元;
(2)今年夏天,車行決定購進(jìn)甲、乙兩種品牌自行車共50輛,在銷售過程中,甲品牌自行車的利潤率為,乙品牌自行車的利潤率為
,若將所購進(jìn)的自行車全部銷售完畢后其利潤不少于29500,那么此次最多購進(jìn)多少輛乙種品牌自行車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,
是等邊三角形,
為對角線
(不含
點(diǎn))上任意一點(diǎn),將
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)
得到
,連接
、
、
.設(shè)點(diǎn)
的坐標(biāo)為
.
(1)若建立平面直角坐標(biāo)系,滿足原點(diǎn)在線段上,點(diǎn)
,
.且
(
),則點(diǎn)
的坐標(biāo)為 ,點(diǎn)
的坐標(biāo)為 ;請直接寫出點(diǎn)
縱坐標(biāo)
的取值范圍是 ;
(2)若正方形的邊長為2,求的長,以及
的最小值. (提示:連結(jié)
:
,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為,與坐標(biāo)軸交于
、
、
三點(diǎn),且
點(diǎn)的坐標(biāo)為
.
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于軸上方部分有兩個動點(diǎn)
、
,且點(diǎn)
在點(diǎn)
的左側(cè),過
、
作
軸的垂線交
軸于點(diǎn)
、
兩點(diǎn),當(dāng)四邊形
為矩形時(shí),求該矩形周長的最大值;
(3)在(2)中的矩形周長最大時(shí),連接,已知點(diǎn)
是
軸上一動點(diǎn),過點(diǎn)
作
軸,交直線
于點(diǎn)
,是否存在這樣的點(diǎn)
,使直線
把
分成面積為
的兩部分;若存在,求出該點(diǎn)的坐標(biāo);若不存在,請說明理由.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(-4,0)、B(1,0),與y軸交于點(diǎn)C(0,-4),P是直線AC下方拋物線上的點(diǎn),若△ACP的面積為6,則tan∠AOP的值為_____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com