日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•攀枝花)如圖,在直角坐標(biāo)系中,已知點A、B在x軸上,且B(t,0)(-1<t<0),等腰△ABC的頂點B在以AC為直徑的半圓D上,點E是直線OC與半圓D除點C以外的另一個交點,連接AE與BC相交于點F.又已知拋物線y=a(x2-2x)向左平移2個單位長度后點O恰與點A重合、點M恰與原點O重合,并把平移后所得拋物線記為H.
          (1)求證:BF=BO;
          (2)如果拋物線H還經(jīng)過點F,試用含t的式子表示a;
          (3)若AE經(jīng)過△AOC的內(nèi)心I,試求出此時經(jīng)過三點A、F、O的拋物線的解析式;
          (4)在(3)的條件下,問在拋物線上是否存在點P,使該點關(guān)于直線AF的對稱點在x軸上?若存在,請求出所有這樣的點的坐標(biāo);若不存在,請說明理由.
          分析:(1)通過觀察圖形,若證線段相等,可以證明它們所在的三角形全等,即證△OBC、△FBA全等即可;這兩個三角形中,∠FAB、∠BCO對應(yīng)的是同一段弧,所以這一對角相等,而∠CBO、∠ABF都是直角,且AB、BC是等腰三角形的腰,不難判斷這兩個三角形全等,則題目可證.
          (2)由(1)的結(jié)論可以得出點F的坐標(biāo),而平移后的拋物線H可由“左加右減、上加下減”的平移規(guī)律得出,將點F的坐標(biāo)代入拋物線H的解析式中求解即可.
          (3)在(2)中,已經(jīng)求出了用t表示出來的拋物線H的解析式,所以此題的關(guān)鍵是求出t的值;點I是△AOC的內(nèi)心,所以直線AE是∠CAO的角平分線,即直線AC、AO關(guān)于直線AE對稱,而AE⊥OC(圓周角定理),那么顯然△AOC是等腰三角形,且AO=AC;拋物線左移2個單位后,O、A以及M、O重合,所以O(shè)A=OM=2,由此不難看出AO=AC=2;而△ABC是等腰直角三角形,由此可以求出AB的長,由OB=OA-AB即可得出t的值,由此得解.
          (4)在(3)題中已經(jīng)明確了直線AC、AO關(guān)于直線AE對稱,且AO正好位于x軸上,所以直線AC與拋物線的交點都符合點P的要求.
          解答:(1)證明:∵AC為半圓的直徑,
          ∴∠ABC=∠CBO=90°,∠AEC=90°;
          ∵△ABC為等腰三角形,
          ∴BA=BC;
          ∵∠AEC=90°,點C、E、O在同一直線上,
          ∴∠AEO=90°,
          ∴∠1+∠3=90°,∠2+∠3=90°,
          ∴∠1=∠2;
          在△ABF與△CBO中,
          ∠ABC=∠CBO=90°
          BA=BC
          ∠1=∠2
          ,
          ∴△ABF≌△CBO,
          ∴BF=BO.

          (2)解:∵點B(t,0),
          ∴BF=BO=-1,即點F的坐標(biāo)(t,-t);
          y=a(x2-2x)=a(x-1)2-a,即原拋物線的頂點為(1,-a);
          由題意知,拋物線H的解析式可記為y=a(x+1)2-a;
          ∵拋物線H過點F(t,-t),
          ∴-t=a(t+1)2-a,at2+2at+a-a=-t
          即:a=
          -t
          t2+2t
          =-
          1
          t+2
          (-1<t<0).

          (3)解:∵O、M是拋物線y=a(x2-2x)與x軸的交點,
          ∴O(0,0)、M(2,0);
          由題意知:A(-2,0)、OA=2;
          ∵AE過△ACO的內(nèi)心I,
          ∴∠1=∠4;
          ∵∠AEC=∠AEO=90°,AE=AE
          ∴△ACE≌△AOE,
          ∴AC=AO,且AC與AO關(guān)于直線AE對稱;
          在Rt△ABC中,AC=2,∠ACB=45°,
          ∴AB=
          2
          ,
          ∴BO=2-
          2
          ,t=
          2
          -2;
          此時拋物線H的解析式為y=-
          2
          2
          (x2+2x),即:y=-
          2
          2
          x2-
          2
          x.

          (4)解:由(3)可知,直線AC與AO關(guān)于直線AE對稱,所以只要直線AC與拋物線H有交點,那么就存在滿足題意的點P;
          設(shè)直線AC的解析式為y=kx+b,代入點A(-2,0)、C(
          2
          -2,
          2
          ),得:
          -2k+b=0
          (
          2
          -2)k+b=
          2

          解得
          k=1
          b=2

          故直線AC:y=x+2;
          聯(lián)立直線AC和拋物線的解析式,有:
          y=x+2
          y=-
          2
          2
          x2-
          2
          x

          解得
          x1=-2
          y1=0
          ,
          x2=-
          2
          y2=2-
          2

          故所求點P的坐標(biāo)為P1(-2,0)、P2(-
          2
          ,2-
          2
          ),即在拋物線H上存在點P1和P2,其關(guān)于直線AF的對稱點在x軸上.
          點評:考查了二次函數(shù)和圓的綜合題,涉及了二次函數(shù)解析式的確定、圓周角定理、三角形的內(nèi)心、全等三角形的判定和性質(zhì)以及軸對稱圖形的性質(zhì)等重要知識點;后面三題環(huán)環(huán)相扣,緊扣圖形是解題的主要思路.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2007•攀枝花)下列圖形中,一定能得出∠1=∠2的是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2007•攀枝花)有兩雙不同的鞋子,第一雙的兩只鞋編號分別為1、2,第二雙的兩只鞋編號分別為3、4,從中任意取出兩只,恰好是同一雙的概率為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2007•攀枝花)如圖,在△ABC中,DE∥BC,AD:DB=1:2,則下列結(jié)論錯誤的是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2007•攀枝花)若⊙O的弦AB長為8,半徑為5,則點0到AB的距離是
          3
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2007•攀枝花)如圖,點C、D是以AB為直徑的半圓O的三等分點,
          CD
          的長為
          1
          3
          π
          ,則圖中陰影部分的面積為
          π
          6
          π
          6
          .(結(jié)果不取近似值)

          查看答案和解析>>

          同步練習(xí)冊答案