日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點(diǎn)D為⊙O上的一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,并且∠CDA=CBD

          1)求證:CD是⊙O的切線;

          2)過點(diǎn)BO的切線,CD的延長(zhǎng)線于點(diǎn)E,BC=12,tanCDA=,求BE的長(zhǎng).

          【答案】(1)證明見解析;(2) BE的長(zhǎng)為5.

          【解析】試題分析:1)如圖,連接OD欲證明CD是⊙O的切線,只需證明CD⊥OA即可.2)通過相似三角形△EBC∽△ODC的對(duì)應(yīng)邊成比例列出關(guān)于BE的方程,通過解方程來求線段BE的長(zhǎng)度即可.

          試題解析:

          1)證明:連OD,OE,如圖,∵AB為直徑,∴∠ADB=90°,即∠ADO+1=90°

          又∵∠CDA=CBD,而∠CBD=1∴∠1=CDA,∴∠CDA+ADO=90°,即∠CDO=90°,CD是⊙O的切線;

          2)解:∵EB為⊙O的切線,∴ED=EB,OEDB,∴∠ABD+DBE=90°OEB+DBE=90°,

          ∴∠ABD=OEB,∴∠CDA=OEB.而tanCDA=,tanOEB==

          RtCDORtCBE,(1)證明:連OD,OE,如圖,

          AB為直徑,∴∠ADB=90°,即∠ADO+1=90°,又∵∠CDA=CBD,而∠CBD=1,∴∠1=CDA,

          ∴∠CDA+ADO=90°,即∠CDO=90°CD是⊙O的切線;∴,CD=×12=8,

          RtCBE中,設(shè)BE=x,x+82=x2+122,解得x=5.即BE的長(zhǎng)為5

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)一個(gè)圖形進(jìn)行放縮時(shí),下列說法中正確的是( 。.
          A.圖形中線段的長(zhǎng)度與角的大小都保持不變
          B.圖形中線段的長(zhǎng)度與角的大小都會(huì)改變
          C.圖形中線段的長(zhǎng)度保持不變、角的大小可以改變
          D.圖形中線段的長(zhǎng)度可以改變、角的大小保持不變

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)某班40同學(xué)的一次數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),適當(dāng)分組后80~90分這個(gè)分?jǐn)?shù)段的劃記人數(shù)為“”,那么此班在這個(gè)分?jǐn)?shù)段的人數(shù)占全班人數(shù)的百分比是( 。
          A.20%
          B.40%
          C.8%
          D.25%

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列各統(tǒng)計(jì)量中,表示一組數(shù)據(jù)離散程度的量是( )

          A.平均數(shù)B.方差C.眾數(shù)D.中位數(shù)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在數(shù)學(xué)活動(dòng)課中,小敏為了測(cè)量校園內(nèi)旗桿CD的高度,先在教學(xué)樓的底端A點(diǎn)處,觀測(cè)到旗桿頂端C的仰角CAD=60°,然后爬到教學(xué)樓上的B處,觀測(cè)到旗桿底端D的俯角是30°,已知教學(xué)樓AB高4米.

          (1)求教學(xué)樓與旗桿的水平距離AD;(結(jié)果保留根號(hào))

          (2)求旗桿CD的高度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,E為AD的中點(diǎn),菱形ABCD的周長(zhǎng)為32,則OE的長(zhǎng)等于(

          A.2
          B.4
          C.8
          D.16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將直角三角形ABC沿AB方向平移AD距離得到直角三角形DEF.已知BE=4cm,EF=7cm,CG=3cm,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點(diǎn)(﹣32)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在邊長(zhǎng)為1的小正方形組成的正方形網(wǎng)格中建立如圖片所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個(gè)頂點(diǎn)都在小正方形上)

          (1)畫出△ABC關(guān)于直線l:x=﹣1的對(duì)稱三角形△A1B1C1;并寫出A1、B1、C1的坐標(biāo).
          (2)在直線x=﹣l上找一點(diǎn)D,使BD+CD最小,滿足條件的D點(diǎn)為
          提示:直線x=﹣l是過點(diǎn)(﹣1,0)且垂直于x軸的直線.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案