日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四邊形ABCD是邊長為60cm的正方形硬紙片,剪掉陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使A、B、C、D四個點(diǎn)重合于圖中的點(diǎn)P,正好形成一個底面是正方形的長方體包裝盒.
          (1)若折疊后長方體底面正方形的面積為1250cm2,求長方體包裝盒的高;
          (2)設(shè)剪掉的等腰直角三角形的直角邊長為x(cm),長方體的側(cè)面積為S(cm2),求S與x的函數(shù)關(guān)系式,并求x為何值時,S的值最大.
          (1)設(shè)剪掉陰影部分的每個等腰直角三角形的腰長為xcm,則NP=
          2
          xcm,
          DP=
          60-
          2
          x
          2
          ,QM=PW=
          2
          ×
          60-
          2
          x
          2
          ,
          由題意得:(
          60-
          2
          x
          2
          ×
          2
          )2=1250

          解得,x1=5
          2
          ,x2=55
          2
          (超過60,故不符合題意舍去),
          答:長方體包裝盒的高為5
          2
          cm.
          另法:∵由已知得底面正方形的邊長為
          1250
          =25
          2
          ,
          ∴AN=25
          2
          ×
          2
          2
          =25.
          ∴PN=60-25×2=10.
          ∴PQ=10×
          2
          2
          =5
          2
          (cm).
          答:長方體包裝盒的高為5
          2
          cm.

          (2)由題意得,S=4×S四邊形QPWM=4×PW•QP,
          ∵PW=
          2
          ×
          60-
          2
          x
          2
          ,QP=x,
          S=4×
          2
          ×
          60-
          2
          x
          2
          ×x=-4x2+120
          2
          x.
          ∵a=-4<0,
          ∴當(dāng)x=15
          2
          時,S有最大值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知,如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊BC在x軸上,直角頂點(diǎn)A在y軸的正半軸上,A(0,2),B(-1,0).
          (1)求點(diǎn)C的坐標(biāo);
          (2)求過A、B、C三點(diǎn)的拋物線的解析式和對稱軸;
          (3)設(shè)點(diǎn)P(m,n)是拋物線在第一象限部分上的點(diǎn),△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,Rt△AOB的兩直角邊OA、OB的長分別是1和3,將△AOB繞O點(diǎn)按逆時針方向旋轉(zhuǎn)90°,至△DOC的位置.
          (1)求過C、B、A三點(diǎn)的二次函數(shù)的解析式;
          (2)若(1)中拋物線的頂點(diǎn)是M,判定△MDC的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸相交于點(diǎn)C.連接AC,BC,A(-3,0),C(0,
          3
          ),且當(dāng)x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
          (1)求拋物線的解析式;
          (2)若點(diǎn)M、N同時從B點(diǎn)出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.
          ①當(dāng)運(yùn)動時間為t秒時,連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
          ②拋物線的對稱軸上是否存在點(diǎn)Q,使得以B、N、Q為頂點(diǎn)的三角形與△A0C相似?如果存在,請直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.
          ③當(dāng)運(yùn)動時間為t秒時,連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在同一直角坐標(biāo)系內(nèi),如果x軸與一次函數(shù)y=kx+4的圖象以及分別過C(1,0)、D(4,0)兩點(diǎn)且平行于y軸的兩條直線所圍成的圖形ABDC的面積為7.
          (1)求k的值;
          (2)求過F、C、D三點(diǎn)的拋物線的解析式;
          (3)線段CD上的一個動點(diǎn)P從點(diǎn)D出發(fā),以1單位/秒的速度沿DC的方向移動(點(diǎn)P不重合于點(diǎn)C),過P點(diǎn)作直線PQ⊥CD交EF于Q.當(dāng)P從點(diǎn)D出發(fā)t秒后,求四邊形PQFC的面積S與t之間的函數(shù)關(guān)系式,并確定t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C(0,3),過點(diǎn)C作x軸的平行線與拋物線交于點(diǎn)D,拋物線的頂點(diǎn)為M,直線y=x+5經(jīng)過D、M兩點(diǎn).
          (1)求此拋物線的解析式;
          (2)連接AM、AC、BC,試比較∠MAB和∠ACB的大小,并說明你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖(1)己知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0),與y軸正半軸交于點(diǎn)C,且
          cos∠CAB=
          10
          10

          (1)求拋物線的解析式;
          (2)如圖(2),己知點(diǎn)H(0,1).問在拋物線上是否存在點(diǎn)G,使得S△GHC=S△GHA?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請說明理由;
          (3)如圖(3),拋物線上點(diǎn)D在x軸上的正投影為點(diǎn)E(2,0),F(xiàn)是OC的中點(diǎn),連接DF,P為線段BD上的一點(diǎn),若∠EPF=∠BDF,求線段PE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系xOy中,二次函數(shù)y1=mx2+(m-3)x-3(m>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
          (1)求點(diǎn)A的坐標(biāo);
          (2)當(dāng)∠ABC=45°時,求m的值;
          (3)已知一次函數(shù)y2=kx+b,點(diǎn)P(n,0)是x軸上的一個動點(diǎn),在(2)的條件下,過點(diǎn)P垂直于x軸的直線交這個一次函數(shù)的圖象于點(diǎn)M,交二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象于N.若只有當(dāng)-2<n<2時,點(diǎn)M位于點(diǎn)N的上方,求這個一次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,中國首個空間實(shí)驗(yàn)室“天宮一號”于2011年9月29日成功發(fā)射.某科技實(shí)驗(yàn)小組也自行設(shè)計(jì)了火箭,經(jīng)測試,該種火箭被豎直向上發(fā)射時,它的高度h(m)與時間t(s)的關(guān)系可以用公式h=-t2+10t-15表示,經(jīng)過______s,火箭達(dá)到它的最高點(diǎn)10米處.

          查看答案和解析>>

          同步練習(xí)冊答案