日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線y=﹣ x2+bx+c與一次函數(shù)y=﹣x+4分別交y軸、x軸于A、B兩點(diǎn).

          (1)求這個(gè)拋物線的解析式;
          (2)設(shè)P(x,y)是拋物線在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PH⊥x軸于點(diǎn)H,交直線AB于點(diǎn)M.
          ①求當(dāng)x取何值時(shí),PM有最大值?最大值是多少?
          ②當(dāng)PM取最大值時(shí),以A、P、M、N為頂點(diǎn)構(gòu)造平行四邊形,求第四個(gè)頂點(diǎn)N的坐標(biāo).

          【答案】
          (1)

          解:∵一次函數(shù)y=﹣x+4分別交y軸、x軸于A、B兩點(diǎn),

          ∴A(0,4),B(4,0),

          把A(0,4),B(4,0)代入y=﹣ x2+bx+c可得

          解得

          ∴拋物線的解析式為y=﹣ x2+x+4


          (2)

          解:①如圖1中,設(shè)P(x,﹣ x2+x+4),則M(x,﹣x+4).

          ∴PM=﹣ x2+m+4﹣(﹣x+4)=﹣ x2+2x=﹣ (x﹣2)2+2,

          ∵﹣ <0,

          ∴x=2時(shí),pM的值最大,最大值為2.

          ②由①可知P(2,4),M(2,2),

          當(dāng)以A、P、M、N為頂點(diǎn)的四邊形為平行四邊形時(shí),N1(0,6),N2(4,2),N3(0,2).


          【解析】(1)由直線解析式可求得A、B的坐標(biāo),再利用待定系數(shù)法可求得拋物線的解析式;(2)①可利用x表示出點(diǎn)M的坐標(biāo),構(gòu)建二次函數(shù)即可解決問(wèn)題.②畫出圖形,滿足條件的點(diǎn)N有三個(gè).
          【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD中,AB=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】問(wèn)題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

          (1)【發(fā)現(xiàn)證明】
          小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖1證明上述結(jié)論.
          (2)【類比引申】
          如圖2,四邊形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足什么關(guān)系時(shí),仍有EF=BE+FD
          (3)【探究應(yīng)用】如圖3,在某公園的同一水平面上,四條通道圍成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40( ,米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng)(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD,F(xiàn)E分別交AC,BC于點(diǎn)D,E兩點(diǎn),當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(shí)(點(diǎn)D不與A,C重合),給出以下個(gè)結(jié)論:①CD=BE ②四邊形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四邊形CDFE= SABC , 上述結(jié)論中始終正確的有(
          A.①②③
          B.②③④
          C.①③④
          D.①②④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個(gè),藍(lán)球1個(gè),現(xiàn)在從中任意摸出一個(gè)紅球的概率為
          (1)求袋中黃球的個(gè)數(shù);
          (2)第一次摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹狀圖或列表法求兩次摸出的都是紅球的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將函數(shù)y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|2x+b|(b為常數(shù))的圖象.若該圖象在直線y=2下方的點(diǎn)的橫坐標(biāo)x滿足0<x<3,則b的取值范圍為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于點(diǎn)O.
          (1)求邊AB的長(zhǎng);
          (2)如圖2,將一個(gè)足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F(xiàn),連接EF與AC相交于點(diǎn)G. ①判斷△AEF是哪一種特殊三角形,并說(shuō)明理由;
          ②旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)E為邊BC的四等分點(diǎn)時(shí)(BE>CE),求CG的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點(diǎn),AD⊥AE.

          (1)求證:AC2=CDBC;
          (2)過(guò)E作EG⊥AB,并延長(zhǎng)EG至點(diǎn)K,使EK=EB.
          ①若點(diǎn)H是點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn),點(diǎn)F為AC的中點(diǎn),求證:FH⊥GH;
          ②若∠B=30°,求證:四邊形AKEC是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形ABCD外作等腰直角△CDE,DE=CE,連接BE,則tan∠EBC=

          查看答案和解析>>

          同步練習(xí)冊(cè)答案