日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為射線BC上一點(diǎn),連接AD,以AD為直角邊在AD的右側(cè)作Rt△ADE,且AD=AE.

          (1)填空:當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),則線段CE、BD的數(shù)量關(guān)系應(yīng)為________________,線段CE所在的直線與射線BC的位置關(guān)系為____________;

          (2)如下圖,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),(1)中的結(jié)論是否仍然成立,請(qǐng)證明;

          (3)如下圖,點(diǎn)DBC的延長(zhǎng)線上,如果AC=cm,△CDE的面積為4cm2時(shí),求線段DE的長(zhǎng)度.

          【答案】⑴CE=BD,CE⊥BC;⑵仍然成立.(3)DE=6.

          【解析】

          (1)證明BAD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;

          (2)仿照(1)的證明方法解答;

          (3)根據(jù)勾股定理求出BC,設(shè)CD=x,BD=CE=y,根據(jù)三角形的面積公式、勾股定理列式計(jì)算即可.

          (1)∵∠BAC=90°,DAE=90°,

          ∴∠BAD=CAE,

          BADCAE中,

          ∴△BAD≌△CAE,

          CE=BD,ACE=ABD=45°,

          CEBD,

          故答案為:相等;垂直;

          (2)仍然成立,

          理由如下:∵∠BAD=BAC+CAD=90°+CAD,CAE=DAE+CAD=90°+CAD,

          ∴∠BAD=CAE,

          ABDACE中,

          ,

          ∴△ABD≌△ACE,

          BD=CE,ACE=B,

          ∵∠B+ACB=90°,

          ∴∠ACE+ACB=90°,

          ∴∠BCE=90°,即CEBD;

          (3)∵∠BAC=90°,

          ∴由勾股定理得,BC=

          ∵△CDE的面積為4,

          CDCE=4,

          設(shè)CD=x,BD=CE=y,則xy=8,

          當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),BC=BDCD=,

          y-x=2,

          x2+y2=(y-x)2+2xy=36,

          DE==6.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖AC 平分∠BAD,過(guò) C 點(diǎn)作 CEAB E,并且 2AEAB+AD則下列結(jié)論:

          ABAD+2BE;②∠DAB+DCB=180°;CDCB;SABCSACD+SBCE,其中不正確的結(jié)論個(gè)數(shù)有

          A. 0 B. 1 C. 2 D. 3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知∠1和∠2互為補(bǔ)角,∠A=D.求證:ABCD.

          證明:∵∠1與∠CGD是對(duì)頂角,

          ∴∠1=CGD______.

          又∠1和∠2互為補(bǔ)角(已知),

          ∴∠CGD和∠2互為補(bǔ)角,

          AEFD_________

          ∴∠A=BFD_______.

          ∵∠A=D(已知),

          ∴∠BFD=D_______,

          ABCD______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),∠1=∠2∠C=∠D

          試說(shuō)明:AC∥DF

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義,如圖1,點(diǎn)M,N把線段AB分割成AM,MNBN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M,N為線段AB的勾股分割點(diǎn).

          (1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),若AM=3,MN=5,求BN的長(zhǎng)

          (2)如圖2,在RtABC中,AC=BC,點(diǎn)M,N在斜邊AB上,∠MCN=45°,求證:點(diǎn)M,N是線段AB的勾股分割點(diǎn);陽(yáng)陽(yáng)在解決第(2)小題時(shí)遇到了困難,陳老師對(duì)陽(yáng)陽(yáng)說(shuō):要證明勾股分割點(diǎn),則需設(shè)法構(gòu)造直角三角形,你可以把CBN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90度試試,請(qǐng)根據(jù)陳老師的提示完成證明過(guò)程.

          (3)如圖3,C是線段AB上的一定點(diǎn),請(qǐng)?jiān)?/span>BC上畫一點(diǎn)D,使C、D是線段AB的勾股分割點(diǎn)

          (要求:完成尺規(guī)作圖,保留作圖痕跡,并在右側(cè)分步寫出作圖步驟)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如下圖,(1)個(gè)圖形中有2個(gè)黑色正方形,(2)個(gè)圖形中有3個(gè)黑色正方形,(3)個(gè)圖形中有5個(gè)黑色正方形,……,根據(jù)圖形變化的規(guī)律,(101)個(gè)圖形中黑色正方形有_____個(gè).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.

          (1)求證:BD=CD;
          (2)若圓O的半徑為3,求 的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .點(diǎn)E為線段BD上任意一點(diǎn)(點(diǎn)E與點(diǎn)B,D不重合),過(guò)點(diǎn)E作EF∥CD,與BC相交于點(diǎn)F,連接CE.設(shè)BE=x,y=

          (1)求BD的長(zhǎng);
          (2)如果BC=BD,當(dāng)△DCE是等腰三角形時(shí),求x的值;
          (3)如果BC=10,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,C,D,E將線段AB分成2:3:4:5四部分,M,P,Q,N分別是AC,CD,DE,EB的中點(diǎn),且MN=21,求線段PQ的長(zhǎng)度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案