日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線

          1)若求該拋物線與x軸的交點坐標(biāo);

          2)若,是否存在實數(shù),使得相應(yīng)的y=1,若有,請指明有幾個并證明你的結(jié)論,若沒有,闡述理由。

          3)若且拋物線在區(qū)間上的最小值是-3,求b的值。

          【答案】1,;(2)即存在兩個不同實數(shù),使得相應(yīng);(3.

          【解析】

          1)先將a=b=1,c=-1代入y=3ax2+2bx+c,得到拋物線為y=3x2+2x-1,再用因式分解法求出方程3x2+2x-1=0的兩個根,即可得到該拋物線與x軸的交點坐標(biāo);

          2)將y=1代入y=3ax2+2bx+c,得到3ax2+2bx+c=1,則△=4b2-12ac-1),再將c-1=-a-b代入△,整理得到△=,由a≠0,得出△>0,根據(jù)一元二次方程根與系數(shù)的關(guān)系可知方程3ax2+2bx+c=1有兩個不相等實數(shù)根,即存在兩個不同實數(shù)x0,使得相應(yīng)的y=1;

          3)先將代入y=3ax2+2bx+c,得到拋物線為y=x2+2bx+b+2,根據(jù)二次函數(shù)的性質(zhì)求出其對稱軸為x=-b,再分三種情況進(jìn)行討論:①x=-b-2;②x=-b2;③-2≤-b≤2

          解(1)當(dāng),時,拋物線為,

          ∵方程的兩個根為,

          ∴該拋物線與軸公共點的坐標(biāo)是

          2)存在兩個不同實數(shù)x0,使得相應(yīng)的y=1.理由如下:

          ,

          ,

          ,

          所以方程有兩個不相等實數(shù)根,

          即存在兩個不同實數(shù),使得相應(yīng);

          3,則拋物線可化為,其對稱軸為,分三種情況:

          ①當(dāng)時,即,則有拋物線在時取最小值為-3,此時,解得,合題意;

          ②當(dāng)時,即,則有拋物線在時取最小值為-3,此時,解得,不合題意,舍去;

          ③當(dāng)時,即,則有拋物線在時取最小值為-3,此時,化簡得:,解得:(不合題意,舍去),;

          綜上:.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若四邊形的一條對角線把四邊形分成兩個等腰三角形,則這條對角線叫做這個四邊形的巧分線,這個四邊形叫巧妙四邊形,若一個四邊形有兩條巧分線,則稱為絕妙四邊形.

          1)下列四邊形一定是巧妙四邊形的是  .(填序號)

          ①平行四邊形;②矩形;③菱形;④正方形.

          (初步應(yīng)用)

          2)如圖,在絕妙四邊形ABCD中,ACAD,且AC垂直平分BD,若∠BAD80°,求∠BCD的度數(shù).

          (深入研究)

          3)在巧妙四邊形ABCD中,ABADCD,∠A90°,AC是四邊形ABCD的巧分線,請直接寫出∠BCD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.

          (1)觀察猜想

          1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

          (2)探究證明

          ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BDCE,判斷PMN的形狀,并說明理由;

          (3)拓展延伸

          ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖 1,在矩形 ABCD 中,點 E lcm/s 的速度從點 A 向點 D 運(yùn)動,運(yùn)動時間為 ts),連結(jié) BE,過點 E EFBE,交 CD F,以 EF 為直徑作O

          1)求證:∠1=∠2;

          2)如圖 2,連結(jié) BF,交O 于點 G,并連結(jié) EG.已知 AB4,AD6

          用含 t 的代數(shù)式表示 DF 的長

          連結(jié) DG,若△EGD 是以 EG 為腰的等腰三角形,求 t 的值;

          3)連結(jié) OC,當(dāng) tanBFC3 時,恰有 OCEG,請直接寫出 tanABE 的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,A是以BC為直徑的O上的一點,ADBC于點D,過點B作O的切線,與CA的延長線相交于點E,點F是EB的中點,連結(jié)CF交AD于點G

          (1)求證:AF是O的切線;

          (2)求證:AG=GD;

          (3)若FB=FG,且O的半徑長為3,求BD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)y=﹣(x22+b的圖象與x軸分別相交于A、B兩點,點A的坐標(biāo)為(﹣1,0),與y軸交于點C

          1)求b的值;

          2)拋物線頂點為E,EFx軸于F點,點P2m)是線段EF上一動點,Qn,0)在x軸上,且n2,若∠QPC90°,求n的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A14),B4n)兩點.

          1)求反比例函數(shù)和一次函數(shù)的解析式;

          2)直接寫出當(dāng)x0時,的解集.

          3)點Px軸上的一動點,試確定點P并求出它的坐標(biāo),使PA+PB最小.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】課堂上,老師給出一道題:如圖,將拋物線Cyx26x+5x軸下方的圖象沿x軸翻折,翻折后得到的圖象與拋物線Cx軸上方的圖象記為G,已知直線lyx+m與圖象G有兩個公共點,求m的取值范圍甲同學(xué)的結(jié)果是﹣5m<﹣1,乙同學(xué)的結(jié)果是m.下列說法正確的是( 。

          A.甲的結(jié)果正確

          B.乙的結(jié)果正確

          C.甲、乙的結(jié)果合在一起才正確

          D.甲、乙的結(jié)果合在一起也不正確

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點M、N;第二步,連結(jié)MN,分別交AB、AC于點EF;第三步,連結(jié)DE、DF..若BD=6AF=4,CD=3,則BE的長是( )

          A. 2 B. 4 C. 6 D. 8

          查看答案和解析>>

          同步練習(xí)冊答案