日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在△ABC中,∠ABC,∠ACB的角平分線交于點O,則∠BOC=90°+
          1
          2
          ∠A=
          1
          2
          ×180°+
          1
          2
          ∠A.
          如圖2,在△ABC中,∠ABC,∠ACB的兩條三等分角線分別對應(yīng)交于O1,O2,則∠BO1C=
          2
          3
          ×180°+
          1
          3
          ∠A,∠BO2C=
          1
          3
          ×180°+
          2
          3
          ∠A.
          根據(jù)以上閱讀理解,你能猜想(n等分時,內(nèi)部有n-1個點)(用n的代數(shù)式表示)∠BOn-1C=(  )
          精英家教網(wǎng)
          A、
          2
          n
          ×180°+
          1
          n
          ∠A
          B、
          1
          n
          ×180°+
          2
          n
          ∠A
          C、
          n
          n-1
          ×180°+
          1
          n-1
          ∠A
          D、
          1
          n
          ×180°+
          n-1
          n
          ∠A
          分析:本題可分別將n=1,2,3…的情況列出來,分別解出∠BOC的度數(shù),再進(jìn)行總結(jié)歸納即可.
          解答:解:n=1時,∠BOn-1C=180°-∠A;
          n=2時,∠BOn-1C=180°-
          1
          2
          (180°-∠A)=
          1
          2
          ×
          180°+
          1
          2
          ∠A;
          n=3時,∠BOn-1C=180°-
          2
          3
          (180°-∠A)=
          1
          3
          ×
          180°+
          2
          3
          ∠A;

          所以當(dāng)n=n時,∠BOn-1C=
          1
          n
          ×180°+
          n-1
          n
          ∠A.
          故答案選D.
          點評:本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖1,在△ABC中,AB=AC,點D是邊BC的中點.以BD為直徑作圓O,交邊AB于點P,連接PC,交AD于點E.
          (1)求證:AD是圓O的切線;
          (2)當(dāng)∠BAC=90°時,求證:
          PE
          CE
          =
          1
          2

          (3)如圖2,當(dāng)PC是圓O的切線,E為AD中點,BC=8,求AD的長.精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
          (1)寫出一個你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
          (2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
          (3)如圖2,若點D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,不必證明;若不存在,請說精英家教網(wǎng)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
          BC2+CD2
          ;
          (2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA=
          DE
          BD
          .如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
          1
          3
          1
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點O.
          (1)求證:∠AOC=90°+
          12
          ∠ABC;
          (2)當(dāng)∠ABC=90°時,且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          同步練習(xí)冊答案