日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標系中,以(1,0)為圓心的⊙P與y軸相切于原點O,過點A(-1,0)的直線AB與⊙P相切于點B.
          (1)求AB的長;
          (2)求AB、OA與所圍成的陰影部分面積(不取近似值);
          (3)求直線AB的解析式;
          (4)直線AB上是否存在點M,使OM+PM的值最小?如果存在,請求出點M的坐標;如果不存在,請說理.

          【答案】分析:(1)連接PB,由于A、P的坐標已知,因此求出OA、AP的長度,由直線AB與⊙P相切于點B,利用切割線定理可以求出AB的長度;
          (2)連接OB,根據(jù)已知條件知道C為AP的中點,利用(1)的結(jié)果可以得到∠OPB=60°,而S陰影=S△ABP-S扇形POB,因此即可求出陰影部分面積;
          (3)設(shè)直線AB與y軸相交于點C,根據(jù)已知條件可以得到∠BAP=30°,而OA=1,因此可以求出CO的長度,即求出了C的坐標,而A的坐標已知,再利用待定系數(shù)法即可求出AB的解析式;
          (4)延長PB交y軸于點N,根據(jù)已知條件可以求出∠ONP=30°,然后得到PN=2PO=2,接著得到BN=PN-PB=1=PB,所以直線AB是線段PN的垂直平分線,點P、N關(guān)于直線AB成軸對稱,即ON與直線AB的交點C就是所求的點M,然后即可求出M的坐標.
          解答:解:(1)連接PB
          ∵點A、P的坐標分別為(-1,0)、(1,0),
          ∴OA=OP=1,
          ∴PA=2.
          ∵直線AB與⊙P相切于點B,
          ∴PB⊥AB,
          ∴∠ABP=90°
          又∵⊙P與y軸相切于原點O,
          ∴PB=OP=1,
          ∴AB=;

          (2)連接OB
          ∵∠ABP=90°,OA=OP,
          ∴OB=OP=AP,
          又∵PB=OP,
          ∴PB=OP=OB,
          ∴∠OPB=60°,
          ∴S陰影=S△ABP-S扇形POB
          =××1-
          =;

          (3)設(shè)直線AB與y軸相交于點C
          ∵∠OPB=60°,∠ABP=90°,
          ∴∠BAP=180°-60°-90°=30°,
          ∴在Rt△OAC中,OC=AC,
          設(shè)OC=x,則AC=2x,
          依題意得(2x)2=x2+12
          解得x=,
          ∵x>0,
          ∴x=;
          ∴點C坐標為(0,),
          可設(shè)直線AB的解析式為y=kx+(k≠0),
          ∵直線AB過點A(-1,0),
          ∴-1•k+=0,
          ∴k=
          ∴直線AB的解析式為y=x+;

          (4)延長PB交y軸于點N
          在Rt△OPN中,∠ONP=180°-60°-90°=30°,
          ∴PN=2PO=1×2=2,
          ∴BN=PN-PB=1=PB;
          又∵PB⊥AB,
          ∴直線AB是線段PN的垂直平分線,點P、N關(guān)于直線AB成軸對稱
          ∴ON與直線AB的交點C就是所求的點M.
          故直線AB上存在點M,使OM+PM的值最小,點M即點C(0,).
          點評:此題比較復雜,考查了一次函數(shù)的圖象和性質(zhì)、圓的切線的性質(zhì)、待定系數(shù)法確定直線的解析式、解直角三角形及軸對稱的性質(zhì)及應用,綜合性非常強,對于學生的要求很高,解題時一定要有耐心.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
          (1)求點B的坐標;
          (2)當∠CPD=∠OAB,且
          BD
          AB
          =
          5
          8
          ,求這時點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
          5
          29
          5
          29

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為(  )

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
          (1)求梯形OABC的面積;
          (2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
          (3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

          查看答案和解析>>

          同步練習冊答案