日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. “數(shù)學(xué)迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
          下面給出小楠對其中一種特殊情形的一種證明方法.
          已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
          求證:a2-b2=bc.
          證明:如圖2,延長CA到D,使得AD=AB.
          ∴∠D=∠ABD,
          ∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
          ∴∠D=45°,∵∠ABC=45°,
          ∴∠D=∠ABC,又∠C=∠C
          ∴△ABC∽△BCD
          ,即
          ∴a2-b2=bc
          根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
          已知:如圖1,在△ABC中,∠A=2∠B.
          求證:a2-b2=bc.

          【答案】分析:首先延長CA到D,使得AD=AB,得出∠D=∠ABC,進而得出△ABC∽△BDC,進而利用相似三角形的性質(zhì)得出答案.
          解答:證明:延長CA到D,使得AD=AB,連接BD.
          ∴∠D=∠ABD,
          ∵∠CAB=∠D+∠ABD=2∠D,
          ∵∠CAB=2∠ABC,
          ∴∠D=∠ABC,又∠C=∠C,
          ∴△ABC∽△BDC,
          ,即
          ∴a2-b2=bc.
          點評:此題主要考查了相似三角形的判定與性質(zhì),正確作出輔助線得出△ABC∽△BDC是解題關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•徐匯區(qū)一模)“數(shù)學(xué)迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
          下面給出小楠對其中一種特殊情形的一種證明方法.
          已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
          求證:a2-b2=bc.
          證明:如圖2,延長CA到D,使得AD=AB.
          ∴∠D=∠ABD,
          ∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
          ∴∠D=45°,∵∠ABC=45°,
          ∴∠D=∠ABC,又∠C=∠C
          ∴△ABC∽△BCD
          BC
          CD
          =
          AC
          BC
          ,即
          a
          b+c
          =
          b
          a

          ∴a2-b2=bc
          根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
          已知:如圖1,在△ABC中,∠A=2∠B.
          求證:a2-b2=bc.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          “數(shù)學(xué)迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
          下面給出小楠對其中一種特殊情形的一種證明方法.
          已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
          求證:a2-b2=bc.
          證明:如圖2,延長CA到D,使得AD=AB.
          ∴∠D=∠ABD,
          ∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
          ∴∠D=45°,∵∠ABC=45°,
          ∴∠D=∠ABC,又∠C=∠C
          ∴△ABC∽△BCD
          數(shù)學(xué)公式,即數(shù)學(xué)公式
          ∴a2-b2=bc
          根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
          已知:如圖1,在△ABC中,∠A=2∠B.
          求證:a2-b2=bc.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年廣東省惠州市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          “數(shù)學(xué)迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
          下面給出小楠對其中一種特殊情形的一種證明方法.
          已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
          求證:a2-b2=bc.
          證明:如圖2,延長CA到D,使得AD=AB.
          ∴∠D=∠ABD,
          ∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
          ∴∠D=45°,∵∠ABC=45°,
          ∴∠D=∠ABC,又∠C=∠C
          ∴△ABC∽△BCD
          ,即
          ∴a2-b2=bc
          根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
          已知:如圖1,在△ABC中,∠A=2∠B.
          求證:a2-b2=bc.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013年安徽省中考數(shù)學(xué)模擬試卷(十七)(解析版) 題型:解答題

          “數(shù)學(xué)迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
          下面給出小楠對其中一種特殊情形的一種證明方法.
          已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
          求證:a2-b2=bc.
          證明:如圖2,延長CA到D,使得AD=AB.
          ∴∠D=∠ABD,
          ∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
          ∴∠D=45°,∵∠ABC=45°,
          ∴∠D=∠ABC,又∠C=∠C
          ∴△ABC∽△BCD
          ,即
          ∴a2-b2=bc
          根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
          已知:如圖1,在△ABC中,∠A=2∠B.
          求證:a2-b2=bc.

          查看答案和解析>>

          同步練習冊答案