日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•徐匯區(qū)一模)“數(shù)學(xué)迷”小楠通過從“特殊到一般”的過程,對(duì)倍角三角形(一個(gè)內(nèi)角是另一個(gè)內(nèi)角的2倍的三角形)進(jìn)行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
          下面給出小楠對(duì)其中一種特殊情形的一種證明方法.
          已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
          求證:a2-b2=bc.
          證明:如圖2,延長(zhǎng)CA到D,使得AD=AB.
          ∴∠D=∠ABD,
          ∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
          ∴∠D=45°,∵∠ABC=45°,
          ∴∠D=∠ABC,又∠C=∠C
          ∴△ABC∽△BCD
          BC
          CD
          =
          AC
          BC
          ,即
          a
          b+c
          =
          b
          a

          ∴a2-b2=bc
          根據(jù)上述材料提供的信息,請(qǐng)你完成下列情形的證明(用不同于材料中的方法也可以):
          已知:如圖1,在△ABC中,∠A=2∠B.
          求證:a2-b2=bc.
          分析:首先延長(zhǎng)CA到D,使得AD=AB,得出∠D=∠ABC,進(jìn)而得出△ABC∽△BDC,進(jìn)而利用相似三角形的性質(zhì)得出答案.
          解答:證明:延長(zhǎng)CA到D,使得AD=AB,連接BD.
          ∴∠D=∠ABD,
          ∵∠CAB=∠D+∠ABD=2∠D,
          ∵∠CAB=2∠ABC,
          ∴∠D=∠ABC,又∠C=∠C,
          ∴△ABC∽△BDC,
          BC
          CD
          =
          AC
          BC
          ,即
          a
          b+c
          =
          b
          a
          ,
          ∴a2-b2=bc.
          點(diǎn)評(píng):此題主要考查了相似三角形的判定與性質(zhì),正確作出輔助線得出△ABC∽△BDC是解題關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•徐匯區(qū)一模)在Rt△ABC中,∠C=90°,AC=5,AB=13,那么tanA等于( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•徐匯區(qū)一模)將拋物線y=x2沿y軸向上平移1個(gè)單位后所得拋物線的解析式是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•徐匯區(qū)一模)拋物線y=mx2-5mx+n與y軸正半軸交于點(diǎn)C,與x軸分別交于點(diǎn)A和點(diǎn)B(1,0),且OC2=OA•OB.
          (1)求拋物線的解析式;                                        
          (2)點(diǎn)P是y軸上一點(diǎn),當(dāng)△PBC和△ABC相似時(shí),求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•徐匯區(qū)一模)梯形ABCD中,AB∥CD,CD=10,AB=50,cosA=
          45
          ,∠A+∠B=90°,點(diǎn)M是邊AB的中點(diǎn),點(diǎn)N是邊AD上的動(dòng)點(diǎn).
          (1)如圖1,求梯形ABCD的周長(zhǎng);        
          (2)如圖2,聯(lián)結(jié)MN,設(shè)AN=x,MN•cos∠NMA=y(0°<∠NMA<90°),求y關(guān)于x的關(guān)系式及定義域;
          (3)如果直線MN與直線BC交于點(diǎn)P,當(dāng)P=∠A時(shí),求AN的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案