日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半徑為數(shù)學(xué)公式的⊙M與射線BA相切作業(yè)寶,切點為N,且AN=3.將Rt△ABC順時針旋轉(zhuǎn)120°后得到Rt△ADE,點B、C的對應(yīng)點分別是點D、E.
          (1)畫出旋轉(zhuǎn)后的Rt△ADE;
          (2)求出Rt△ADE的直角邊DE被⊙M截得的弦PQ的長度;
          (3)判斷Rt△ADE的斜邊AD所在的直線與⊙M的位置關(guān)系,并說明理由.

          解:(1)如圖Rt△ADE就是要畫的圖形

          (2)連接MQ,過M點作MF⊥DE,垂足為F,由Rt△ABC可知,NE=1,
          在Rt△MFQ中,解得FQ=,故弦PQ的長度2

          (3)AD與⊙M相切.
          證明:過點M作MH⊥AD于H,連接MN,MA,則MN⊥AE,且MN=,
          在Rt△AMN中,tan∠MAN==,
          ∴∠MAN=30°,
          ∵∠DAE=∠BAC=60°,
          ∴∠MAD=30°,
          ∴∠MAN=∠MAD=30°,
          ∴MH=MN,
          ∴AD與⊙M相切.
          分析:(1)把三角形AB旋轉(zhuǎn)120°就能得到圖形.
          (2)連接MQ,過M點作MF⊥DE,由AN=3,AC=4,求出NE的長;在Rt△MFQ中,利用勾股定理可求出QF,根據(jù)垂徑定理知QF就是弧長PQ的一半.
          (3)過M作AD的垂線設(shè)垂足為H,然后證MH與⊙M半徑的大小關(guān)系即可;連接AM、MN,由于AE是⊙M的切線,故MN⊥AE,在Rt△AMN中,通過解直角三角形,易求得∠MAN=30°,由此可證得AM是∠DAE的角平分線,根據(jù)角平分線的性質(zhì)即可得到MH=MN,由此可證得⊙M與AD相切.
          點評:本題主要考查切線的判定,掌握切線的性質(zhì)很重要,難度不大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點D,且AB=4,BD=5,則點D到BC的距離是(  )
          A、3B、4C、5D、6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          21、如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,則∠DCB=
          55
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          22、如圖所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂線l分別交AB、AC及BC的延長線于點D、E、F,連接BE. 求證:EF=2DE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
          3
          5
          ,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個公共點,則R的取值范圍是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足為E,求證:四邊形CFED是菱形.

          查看答案和解析>>

          同步練習(xí)冊答案