日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一筆畫問題

          你可以輕易地一筆畫出如圖所示中(1)(2)(3),但(4)(5)你就一筆畫不出,這是為什么?

          圖(1)中A、B都只有一條線經(jīng)過,(3)中的A、B和(4)中的A、B、C、D都有三條線經(jīng)過,這種有奇數(shù)條過的點叫做奇點,而(2)、(3)、(4)中未標字母的點都有兩條或四條線經(jīng)過,這種有偶數(shù)條線經(jīng)過的點叫偶點,凡是像(1)(3)那樣只有兩個奇點或像(2)那樣沒有奇點的都可一筆畫出.而像(4)那樣有四個奇點就必須兩筆才能畫出,像(5)那樣有八個奇點的就必須要四筆才能畫出.

          學(xué)了上面的知識,你來試試看,下面四個圖形中,哪幾個可以一筆畫出?

          答案:
          解析:

          都可以一筆畫出


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          21、我們在解決數(shù)學(xué)問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
          譬如,在學(xué)習(xí)了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
          問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
          為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
          基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
          基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

          問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形.
          (1)把一個正方形分割成9個小正方形.
          一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形.
          另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形.
          (2)把一個正方形分割成10個小正方形.
          方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形.
          (3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
          (4)把一個正方形分割成n(n≥9)個小正方形.
          方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依次類推,即可把一個正方形分割成n(n≥9)個小正方形.
          從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形.
          類比應(yīng)用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形.
          (1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
          (2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
          (3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

          (4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          18世紀時,風(fēng)景秀麗的小城哥尼斯堡中有一條小河,河的中間有兩個小島,河兩岸與小島之間共建有7座橋(圖1).當(dāng)時小城的居民中流傳著一道難題:“一個人怎樣走才能不重復(fù)地走過所有7座橋,再回到出發(fā)點?”
          這就是數(shù)學(xué)史上著名的“7橋問題“,著名的數(shù)學(xué)家歐拉知道了“7橋問題“,他用四個點A、B、C、D分別表示小島和河岸,用7條線表示7座橋(圖2),于是,問題就成為“如何一筆畫出圖2中的圖形?“歐拉經(jīng)過研究發(fā)現(xiàn),圖2不能一筆畫出.這就是說,找不到不重復(fù)地經(jīng)過所有7座橋的路線.
          可以想象,凡是“一筆畫“,一定有一個“起點“,一個“終點“,還有一些“過路點“,有一條進入過路點,必有一條線離開過路點.這樣,與過路點相連的線必為偶數(shù)條,而與奇數(shù)條線相連的點,只能是起點和終點,這樣的點的個數(shù)只能是
          0或2
          0或2

          如果你還不能填上面的空,請你研究圖3的四個圖形,根據(jù)你的研究結(jié)果,把上面的空填上.
          在7橋問題中,如果允許你再架一座橋,能否不重復(fù)地一次走遍這8座橋?這座橋應(yīng)建在何處?請你在圖2中畫出來.并回答有哪幾種方式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          我們在解決數(shù)學(xué)問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
          譬如,在學(xué)習(xí)了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
          問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
          為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
          基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
          基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

          問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形.
          (1)把一個正方形分割成9個小正方形.
          一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形.
          另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形.
          (2)把一個正方形分割成10個小正方形.
          方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形.
          (3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
          (4)把一個正方形分割成n(n≥9)個小正方形.
          方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依此類推,即可把一個正方形分割成n(n≥9)個小正方形.
          從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形.
          類比應(yīng)用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形.
          (1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
          (2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
          (3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

          (4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:山東省中考真題 題型:解答題

          我們在解決數(shù)學(xué)問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題。
          譬如,在學(xué)習(xí)了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題。
          問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
          為解決上面問題,我們先來研究兩種簡單的“基本分割法”,
          基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形。
          基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形。

          問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形。
          (1)把一個正方形分割成9個小正方形,
          一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形。
          另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形。
          (2)把一個正方形分割成10個小正方形,
          方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形。
          (3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法).
          (4)把一個正方形分割成n(n≥9)個小正方形,
          方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依次類推,即可把一個正方形分割成n(n≥9)個小正方形.從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形。
          類比應(yīng)用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形。
          (1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
          (2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
          (3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);
          (4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖)。

          查看答案和解析>>

          同步練習(xí)冊答案