日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21、我們在解決數(shù)學問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
          譬如,在學習了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學習了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
          問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
          為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
          基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
          基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

          問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形.
          (1)把一個正方形分割成9個小正方形.
          一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形.
          另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形.
          (2)把一個正方形分割成10個小正方形.
          方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形.
          (3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
          (4)把一個正方形分割成n(n≥9)個小正方形.
          方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依次類推,即可把一個正方形分割成n(n≥9)個小正方形.
          從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形.
          類比應用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形.
          (1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
          (2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
          (3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

          (4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖).
          分析:(3)按“基本分割2”進行兩次即可;
          (4)類比應用:
          ①基本分割法1即利用正三角形的3條中位線把一個正三角形分割成4個小正三角形;
          ②基本分割法2即作正三角形的一條中位線,將其分割成一個小正三角形和梯形,再利用梯形上底的中點和下底的三等分點,將梯形分割成5個正三角形,從而把一個正三角形分割成6個小正三角形;
          ③圖c分別按基本分割1和基本分割2各進行一次即可;
          圖d分別按基本分割1進行3次即可;
          圖e分別按基本分割2進行2次即可;
          ④類比正方形的分割中的第(4)小題,即可作出答案:
          通過“基本分割法1”、“基本分割法2”或其組合把一個正三角形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正三角形,從而把一個正三角形分割成12個、13個、14個小正方形,依次類推,即可把一個正三角形分割成n(n≥9)個小正三角形.
          解答:解:(1)把一個正方形分割成11個小正方形:
          (2分)
          (2)把一個正三角形分割成4個小正三角形:
          (3分)
          (3)一個正三角形分割成6個小正三角形:
          (5分)
          (4)把一個正三角形分割成9個、10個和11個小正三角形:
          (8分)
          把一個正三角形分割成n(n≥9)個小正三角形的分割方法:通過“基本分割法1”、“基本分割法2”或其組合,把一個正三角形分割成9個、10個和11個小正三角形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正三角形,從而把一個正三角形分割成12個、13個、14個小正三角形,依次類推,即可把一個正三角形分割成n(n≥9)個小正三角形.(10分)
          點評:本題一方面考查了學生的動手操作能力,另一方面考查了學生的空間想像能力,重視知識的發(fā)生過程,讓學生體驗學習的過程.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:解答題

          我們在解決數(shù)學問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
          譬如,在學習了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學習了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
          問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
          為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
          基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
          基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

          問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形.
          (1)把一個正方形分割成9個小正方形.
          一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形.
          另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形.
          (2)把一個正方形分割成10個小正方形.
          方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形.
          (3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
          (4)把一個正方形分割成n(n≥9)個小正方形.
          方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依此類推,即可把一個正方形分割成n(n≥9)個小正方形.
          從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形.
          類比應用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形.
          (1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
          (2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
          (3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

          (4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:閱讀理解

          我們在解決數(shù)學問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.

          譬如,在學習了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學習了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.

          問題提出:如何把一個正方形分割成)個小正方形?

          為解決上面問題,我們先來研究兩種簡單的“基本分割法”.

          基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.

          基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

           


          問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成)個小正方形.

          (1)把一個正方形分割成9個小正方形.

          一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成(個)小正方形.

          另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成(個)小正方形.

          (2)把一個正方形分割成10個小正方形.

          方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加個小正方形,從而分割成(個)小正方形.

          (3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)

          (4)把一個正方形分割成)個小正方形.

          方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依次類推,即可把一個正方形分割成)個小正方形.

          從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成)個小正方形.

          類比應用:仿照上面的方法,我們可以把一個正三角形分割成)個小正三角形.

          (1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a 中畫出草圖).

          (2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b 中畫出草圖).

          (3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)

           


          (4)請你寫出把一個正三角形分割成)個小正三角形的分割方法(只寫出分割方法,不用畫圖).

          查看答案和解析>>

          科目:初中數(shù)學 來源:山東省中考真題 題型:解答題

          我們在解決數(shù)學問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題。
          譬如,在學習了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學習了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題。
          問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
          為解決上面問題,我們先來研究兩種簡單的“基本分割法”,
          基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形。
          基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形。

          問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形。
          (1)把一個正方形分割成9個小正方形,
          一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形。
          另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形。
          (2)把一個正方形分割成10個小正方形,
          方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形。
          (3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法).
          (4)把一個正方形分割成n(n≥9)個小正方形,
          方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依次類推,即可把一個正方形分割成n(n≥9)個小正方形.從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形。
          類比應用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形。
          (1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
          (2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
          (3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);
          (4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖)。

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

          (2009•青島)我們在解決數(shù)學問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
          譬如,在學習了一元一次方程的解法以后,進一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學習了三角形內(nèi)角和定理以后,進一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
          問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
          為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
          基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
          基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

          問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形.
          (1)把一個正方形分割成9個小正方形.
          一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形.
          另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形.
          (2)把一個正方形分割成10個小正方形.
          方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形.
          (3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
          (4)把一個正方形分割成n(n≥9)個小正方形.
          方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依此類推,即可把一個正方形分割成n(n≥9)個小正方形.
          從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形.
          類比應用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形.
          (1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
          (2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
          (3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

          (4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖).

          查看答案和解析>>

          同步練習冊答案