日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,D為CE的中點(diǎn),F(xiàn)為AD上一點(diǎn),且EF=AC.求證:∠DFE=∠DAC.

          證明:過C作CM⊥AD于M,過E作EN⊥AD于N,
          在△DEN和△DCM中

          ∴△DEN≌△DCM(AAS),
          ∴EN=FC,
          在Rt△ACM和Rt△FEM中

          ∴Rt△FEN≌Rt△CAM,
          ∴∠DFE=∠DAC.
          分析:首先根據(jù)全等三角形的判定得出△DEN≌△DCM,進(jìn)而得出EN=FC,即可得出Rt△FEN≌Rt△CAM,進(jìn)而得出∠DFE=∠DAC.
          點(diǎn)評(píng):此題主要考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定定理得出是解題關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•莘縣二模)如圖,AB為⊙O的直徑,過半徑OA的中點(diǎn)G作弦CE⊥AB,在
          CB
          上取一點(diǎn)D,直線CD、ED分別交直線AB于點(diǎn)F和M.
          (1)求∠COA和∠FDM的度數(shù);
          (2)已知OM=1,MF=3,請(qǐng)求出⊙O的半徑并計(jì)算tan∠DMF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,AB為⊙O的直徑,CD為弦,且CD⊥AB,垂足為H.
          (1)如果⊙O的半徑為4,∠BAC=30°,求CD的長(zhǎng);
          (2)若點(diǎn)E為ADB弧的中點(diǎn),連接OE、CE.求證:CE平分∠OCD;
          (3)在(1)的條件下,圓周上到直線AC距離為3的點(diǎn)有多少個(gè)?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=
          k2
          x
          的圖象交于點(diǎn)A(1,6),B(3,a).
          (1)求k1、k2的值;
          (2)直接寫出一次函數(shù)y=k1x+b的值大于反比例函數(shù)y=
          k2
          x
          的值時(shí)x的取值范圍:
          1<x<3或x<0
          1<x<3或x<0

          (3)如圖,等腰梯形OBCD中,BC∥OD,OB=CD,OD邊在x軸上,過點(diǎn)C作CE⊥OD于點(diǎn)E,CE和反比例函數(shù)的圖象交于點(diǎn)P,當(dāng)點(diǎn)P為CE的中點(diǎn)時(shí),求梯形OBCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,D為CE的中點(diǎn),F(xiàn)為AD上一點(diǎn),且EF=AC.求證:∠DFE=∠DAC.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案