日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,點(diǎn)O是∠EPF平分線上的一點(diǎn),以點(diǎn)O為圓心的圓與角的兩邊分別交于點(diǎn)A、BC、D 求證:AB=CD;

          【答案】詳見解析

          【解析】

          過點(diǎn)O分別作PB、PD的垂線,垂足分別為MN,連接OA、OC,根據(jù)角平分線性質(zhì)得出ON=OM,根據(jù)勾股定理求出AM=CN,根據(jù)垂徑定理得出AB=2AMCD=2CN,即可得出答案.

          證明:過點(diǎn)O分別作PBPD的垂線,垂足分別為M、N,連接OAOC,

          則∠OMA=ONC=90°
          ∵點(diǎn)O是∠EPF的平分線上,
          OM=ON
          RtAMORt△ONC中,由勾股定理得:AM2=OA2-OM2,CN2=OC2-ON2,
          OC=OA,
          AM=CN,
          OM、ONO,OMAB,ONCD,
          AB=2AMCD=2CN,
          AB=CD

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)以致用:問題1:怎樣用長為的鐵絲圍成一個面積最大的矩形?

          小學(xué)時我們就知道結(jié)論:圍成正方形時面積最大,即圍成邊長為的正方形時面積最大為.請用你所學(xué)的二次函數(shù)的知識解釋原因.

          思考驗(yàn)證:問題2:怎樣用鐵絲圍一個面積為且周長最小的矩形?

          小明猜測:圍成正方形時周長最。

          為了說明其中的道理,小明翻閱書籍,找到下面的材料:

          結(jié)論:在、均為正實(shí)數(shù))中,若為定值,則,當(dāng)且僅當(dāng)時,有最小值

          均為正實(shí)數(shù))的證明過程:

          對于任意正實(shí)數(shù)、,,

          ,當(dāng)且僅當(dāng)時,等號成立。

          解決問題:

          1)若,則  (當(dāng)且僅當(dāng)  時取;

          2)運(yùn)用上述結(jié)論證明小明對問題2的猜測;

          3)當(dāng)時,求的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,ME分別是邊AB、AD上的點(diǎn),AM=BM,AE=AD,連接ME并延長交CD的延長線于點(diǎn)N

          (1)求證:△AME∽△BCM.

          (2)若正方形的邊長為4,求CN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形BCOG中,OC3,點(diǎn)A為邊OG上一點(diǎn),OA,AB,∠CBA30°.動點(diǎn)D以每秒1個單位的速度從點(diǎn)C出發(fā)沿CO向終點(diǎn)O運(yùn)動,同時動點(diǎn)E以每秒2個單位的速度從點(diǎn)A出發(fā)沿AB向終點(diǎn)B運(yùn)動,過點(diǎn)DDFAB,交BC于點(diǎn)F,連接AD、DE、EF,設(shè)運(yùn)動時間為1秒.

          1)求DF的長(用含t的代數(shù)式表示)

          2)求證:四邊形ADFE為平行四邊形;

          3)探索當(dāng)t為何值時,BEF與以D,E,F為頂點(diǎn)的三角形相似?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知雙曲線,經(jīng)過點(diǎn).

          1)求的值;

          2)過軸,垂足為,點(diǎn)是雙曲線的一點(diǎn),連接,,的面積為12,求直線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b24ac0;②a+b+c0;③ca=2;④方程ax2+bx+c2=0有兩個相等的實(shí)數(shù)根.其中正確結(jié)論的個數(shù)為( 。

          A. 1B. 2C. 3D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC內(nèi)接于⊙O,BC=6AC=2,∠A-B=90°,則⊙O的面積為( )

          A.9.6πB.10πC.10.8πD.12π

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線yx2(1m)xmx軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸負(fù)半軸于點(diǎn)C.

          (1)如圖1,m3

          ①直接寫出A,B,C三點(diǎn)的坐標(biāo);

          ②若拋物線上有一點(diǎn)D,∠ACD45°,求點(diǎn)D的坐標(biāo);

          (2)如圖2,過點(diǎn)E(m,2)作一直線交拋物線于點(diǎn)PQ兩點(diǎn),連接APAQ,分別交y軸于MN兩點(diǎn),求證:OMON是一個定值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價為20元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

          (1)求出y與x的函數(shù)關(guān)系式;

          (2)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

          查看答案和解析>>

          同步練習(xí)冊答案