日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①,分別以直角三角形ABC三邊為直徑向外作三個(gè)半圓,其面積分別用S1,S2,S3表示,則不難證明S1=S2+S3
          (1)如圖②,分別以直角三角形ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1,S2,S3表示,那么S1,S2,S3之間有什么關(guān)系;(不必證明)
          (2)如圖③,分別以直角三角形ABC三邊為邊向外作三個(gè)正三角形,其面積分別用S1、S2、S3表示,請(qǐng)你確定S1,S2,S3之間的關(guān)系并加以證明;
          (3)若分別以直角三角形ABC三邊為邊向外作三個(gè)一般三角形,其面積分別用S1,S2,S3表示,為使S1,S2,S3之間仍具有與(2)相同的關(guān)系,所作三角形應(yīng)滿足什么條件證明你的結(jié)論;
          (4)類比(1),(2),(3)的結(jié)論,請(qǐng)你總結(jié)出一個(gè)更具一般意義的結(jié)論.
          精英家教網(wǎng)
          分析:利用直角△ABC的邊長(zhǎng)就可以表示出S1、S2、S3的大。切蔚倪厺M足勾股定理.
          解答:解:設(shè)直角三角形ABC的三邊BC、CA、AB的長(zhǎng)分別為a、b、c,則c2=a2+b2
          (1)S1=S2+S3;

          (2)S1=S2+S3.證明如下:
          顯然,S1=
          3
          4
          c2
          ,S2=
          3
          4
          a2
          ,S3=
          3
          4
          b2

          ∴S2+S3=
          3
          4
          (a2+b2)=
          3
          4
          c2
          =S1,
          即S1=S2+S3

          (3)當(dāng)所作的三個(gè)三角形相似時(shí),S1=S2+S3.證明如下:
          ∵所作三個(gè)三角形相似
          S2
          S1
          =
          a2
          c2
          ,
          S3
          S1
          =
          b2
          c2

          S2+S3
          S1
          =
          a2+b2
          c2
          =1
          ∴S1=S2+S3;

          (4)分別以直角三角形ABC三邊為一邊向外作相似圖形,其面積分別用S1、S2、S3表示,則S1=S2+S3
          點(diǎn)評(píng):本題是對(duì)勾股定理進(jìn)行的證明,難易程度適中.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖甲,分別以兩個(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA 所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上),拋物線y=
          14
          x2+bx+c
          經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1.
          (1)求B點(diǎn)坐標(biāo);
          (2)求證:ME是⊙P的切線;
          (3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),
          ①求△ACQ周長(zhǎng)的最小值;
          ②若FQ=t,S△ACQ=S,直接寫出S與t之間的函數(shù)關(guān)系式.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知△ABC中,∠ABC=90゜,AB=BC,點(diǎn)A、B分別是x軸和y軸上的一動(dòng)點(diǎn).
          (1)如圖1,若點(diǎn)C的橫坐標(biāo)為-4,求點(diǎn)B的坐標(biāo);
          (2)如圖2,BC交x軸于D,AD平分∠BAC,若點(diǎn)C的縱坐標(biāo)為3,A(5,0),求點(diǎn)D的坐標(biāo).
          (3)如圖3,分別以O(shè)B、AB為直角邊在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y軸于M,求 S△BEM:S△ABO

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所對(duì)的邊分別記作a、b、c.
          (1)如圖1,分別以△ABC的三條邊為邊長(zhǎng)向外作正方形,其正方形的面積由小到大分別記作S1、S2、S3,則有S1+S2=S3;
          (2)如圖2,分別以△ABC的三條邊為直徑向外作半圓,其半圓的面積由小到大分別記作S1、S2、S3,請(qǐng)問S1+S2與S3有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
          (3)分別以直角三角形的三條邊為直徑作半圓,如圖3所示,其面積由小到大分別記作S1、S2、S3,根據(jù)(2)中的探索,直接回答S1+S2與S3有怎樣的數(shù)量關(guān)系;
          (4)若Rt△ABC中,AC=6,BC=8,求出圖4中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:湖北省中考真題 題型:解答題

          如圖甲,分別以兩個(gè)彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上),若⊙P過A、B、E三點(diǎn)(圓心在x軸上),拋物線經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1。
          (1)求B點(diǎn)坐標(biāo);
          (2)求證:ME是⊙P的切線;
          (3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),①求△ACQ周長(zhǎng)的最小值;②若FQ=t,S△ACQ=s,直接寫出s與t之間的函數(shù)關(guān)系式。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012年湖北省荊州市蘆陵中學(xué)九年級(jí)第二次質(zhì)檢試題數(shù)學(xué)卷 題型:解答題

          (本題滿分12分)如圖甲,分別以兩個(gè)彼此相鄰的正方形?OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標(biāo)系(O、C、F三點(diǎn)在x軸正半軸上).若⊙P過A、B、E三點(diǎn)(圓心在x軸上),拋物線y=14x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為G,M是FG的中點(diǎn),正方形CDEF的面積為1.

          【小題1】(1)求B點(diǎn)坐標(biāo);
          【小題2】(2)求證:ME是⊙P的切線;
          【小題3】(3)設(shè)直線AC與拋物線對(duì)稱軸交于N,Q點(diǎn)是此對(duì)稱軸上不與N點(diǎn)重合的一動(dòng)點(diǎn),①求△ACQ周長(zhǎng)的最小值;
          ②若FQ=t,SACQ=S,直接寫出S與t之間的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案