日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(2016山東濰坊第25題)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.

          (1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標;

          (3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

          【答案】(1)y=x2+2x+1;(2)P(﹣,﹣;(3)(﹣4,1)(3,1).

          【解析】

          試題分析:(1)用待定系數(shù)法求出拋物線解析式即可;(2)設(shè)點P(m, m2+2m+1),表示出PE=﹣m2﹣3m,再用S四邊形AECP=S△AEC+S△APC=AC×PE,建立函數(shù)關(guān)系式,求出極值即可;(3)先判斷出PF=CF,再得到∠PCF=∠EAF,以C、P、Q為頂點的三角形與△ABC相似,分兩種情況計算即可.

          試題解析:(1)∵點A(0,1).B(﹣9,10)在拋物線上,

          ,

          b=2,c=1

          ∴拋物線的解析式為y=x2+2x+1,

          (2)∵AC∥x軸,A(0,1)

          x2+2x+1=1,

          ∴x1=6,x2=0,

          ∴點C的坐標(﹣6,1),

          ∵點A(0,1).B(﹣9,10),

          ∴直線AB的解析式為y=﹣x+1,

          設(shè)點P(m, m2+2m+1)

          ∴E(m,﹣m+1)

          ∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,

          ∵AC⊥EP,AC=6,

          ∴S四邊形AECP

          =S△AEC+S△APC

          =AC×EF+AC×PF

          =AC×(EF+PF)

          =AC×PE

          =×6×(﹣m2﹣3m)

          =﹣m2﹣9m

          =﹣(m+2+,

          ∵﹣6<m<0

          ∴當(dāng)m=﹣時,四邊形AECP的面積的最大值是

          此時點P(﹣,﹣).

          (3)∵y=x2+2x+1=(x+3)2﹣2,

          ∴P(﹣3,﹣2),

          ∴PF=yF﹣yP=3,CF=xF﹣xC=3,

          ∴PF=CF,

          ∴∠PCF=45°

          同理可得:∠EAF=45°,

          ∴∠PCF=∠EAF,

          ∴在直線AC上存在滿足條件的Q,

          設(shè)Q(t,1)且AB=9,AC=6,CP=3

          ∵以C、P、Q為頂點的三角形與△ABC相似,

          ①當(dāng)△CPQ∽△ABC時,

          ,

          ∴t=﹣4,

          ∴Q(﹣4,1)

          ②當(dāng)△CQP∽△ABC時,

          ,

          ,

          ∴t=3,

          ∴Q(3,1).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】 ABCD 中,AD=4 cmAB=5 cm,則 ABCD 的周長等于( )

          A.18 cmB.20 cmC.9 cmD.16 cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P為拋物線上,且位于x軸下方

          (1)如圖1,若P(1,-3)、B(4,0),

          求該拋物線的解析式;

          若D是拋物線上一點,滿足DPO=POB,求點D的坐標;

          (2) 如圖2,已知直線PA、PB與y軸分別交于E、F兩點當(dāng)點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在AOBCOD中,OA=OBOC=OD,AOB=COD=50°,

          求證:①AC=BD②∠APB=50°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】巴黎與北京的時間差為﹣7時(正數(shù)表示同一時刻比北京時間早的時數(shù)),如果北京時間是721400,那么巴黎時間是( )

          A. 7221B. 727C. 717D. 725

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一等腰三角形的周長為20,其中一邊長為5,則它的腰長等于______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣x+b與拋物線的另一個交點為D.

          (1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;

          (2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;

          (3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒個單位的速度運動到點D后停止,問當(dāng)點E的坐標是多少時,點Q在整個運動過程中所用時間最少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】A(7,-3)關(guān)于y軸的對稱點是B,則線段AB的長是________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2019年揚州鑒真國際半程馬拉松近有4.6萬人參跑,請把4.6萬用科學(xué)記數(shù)法表示( )

          A. 0.46×103B. 4.6×103C. 0.46×104D. 4.6×104

          查看答案和解析>>

          同步練習(xí)冊答案