日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,線段 的直徑,弦 于點(diǎn) ,點(diǎn) 是弧 上任意一點(diǎn),

          (1)求 的半徑 的長(zhǎng)度;
          (2)求 ;
          (3)直線 交直線 于點(diǎn) ,直線 于點(diǎn) ,連接 于點(diǎn) ,求 的值.

          【答案】
          (1)

          解:連接OC,在Rt△COH中,

          ∵CH=4,OH=r-2,OC=r.

          ∴ (r-2)2+42=r2.

          ∴ r=5


          (2)

          解:∵弦CD與直徑AB垂直,

          ∴ 弧AD=弧AC=弧CD.

          ∴ ∠AOC=∠COD.

          ∴∠CMD=∠COD.

          ∴ ∠CMD=∠AOC.

          ∴sin∠CMD=sin∠AOC.

          在Rt△COH中,

          ∴sin∠AOC==.

          ∴sin∠CMD=.


          (3)

          解:連接AM,

          ∴∠AMB=90°.

          在Rt△AMB中,

          ∴∠MAB+∠ABM=90°.

          在Rt△EHB中,

          ∴∠E+∠ABM=90°.

          ∴∠MAB=∠E.

          ∵弧BM=弧BM,

          ∴∠MNB=∠MAB=∠E.

          ∵∠EHM=∠NHF.

          ∴△EHM∽△NHF

          =.

          ∴HE.HF=HM.HN.

          ∵AB與MN交于點(diǎn)H,

          ∴HM.HN=HA.HB=HA.(2r-HA)=2×(10-2)=16.

          ∴HE.HF=16.


          【解析】(1)連接OC,在Rt△COH中,根據(jù)勾股定理即可r.
          (2)根據(jù)垂徑定理即可得出弧AD=弧AC=弧CD;再根據(jù)同弧所對(duì)的圓周角等于圓心角的一半;得出 ∠CMD=∠AOC;在Rt△COH中,根據(jù)銳角三角函數(shù)定義即可得出答案.
          (3)連接AM,則∠AMB=90°.在Rt△AMB中和Rt△EHB中,根據(jù)同角的余角相等即可∠MAB=∠E;再由三角形相似的判定和性質(zhì)即可得HE.HF=HM.HN.
          又由AB與MN交于點(diǎn)H,得出HM.HN=HA.HB=HA.(2r-HA)=2×(10-2)=16;從而求出HE.HF=16.
          【考點(diǎn)精析】關(guān)于本題考查的余角和補(bǔ)角的特征和勾股定理的概念,需要了解互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無(wú)關(guān);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列圖形是將正三角形按一定規(guī)律排列,則第4個(gè)圖形中所有正三角形的個(gè)數(shù)有( )

          A.160
          B.161
          C.162
          D.163

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】命題“兩直線平行,內(nèi)錯(cuò)角的平分線互相平行”是真命題嗎?如果是,請(qǐng)給出證明;如果不是,請(qǐng)舉出反例.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】根據(jù)給出的圖形回答下列問(wèn)題:

          (1)∠1表示成∠A,這樣的表示方法是否正確?如果不正確,應(yīng)該怎樣改正?

          (2)圖中哪個(gè)角可以用一個(gè)字母來(lái)表示?

          (3)以A為頂點(diǎn)的角有幾個(gè)?請(qǐng)表示出來(lái);

          (4)∠ADC與∠ACD是同一個(gè)角嗎?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在 中, , , , ,點(diǎn) 上, 于點(diǎn) , 于點(diǎn) ,當(dāng) 時(shí),

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下面是經(jīng)過(guò)已知直線外一點(diǎn)作這條直線的垂線的尺規(guī)作圖過(guò)程:

          已知:直線ll外一點(diǎn)P.(如圖1)

          求作:直線l的垂線,使它經(jīng)過(guò)點(diǎn)P.

          作法:如圖2

          (1)在直線l上任取兩點(diǎn)A,B;

          (2)分別以點(diǎn)A,B為圓心,AP,BP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q;

          (3)作直線PQ.

          所以直線PQ就是所求的垂線.

          請(qǐng)回答:該作圖的依據(jù)是_________________________________________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC中,ADBC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE.

          若∠BAE=40°,求∠C的度數(shù);

          若△ABC周長(zhǎng)13cm,AC=6cm,求DC長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):

          (1)①若∠DCE=45°,則∠ACB的度數(shù)為  ;

          ②若∠ACB=140°,求∠DCE的度數(shù);

          (2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說(shuō)明理由.

          (3)當(dāng)∠ACE<180°且點(diǎn)E在直線AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)直接寫出∠ACE角度所有可能的值(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,ABAC,DBC邊的中點(diǎn),過(guò)點(diǎn)DDEAB,DFAC,垂足分別為E,F.

          (1)求證:BED≌△CFD;

          (2)若∠A60°,BE1,求ABC的周長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案