日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標系中,⊙A的半徑為4,A的坐標為(2,0),⊙A與x軸交于E,F(xiàn)兩點,與y軸交于C、D兩點,過C點作⊙A的切線BC交x軸于B
          (1)求直線BC的解析式;
          (2)若拋物線y=ax2+bx+c的頂點在直線BC上,與x軸的交點恰為⊙A與x軸的交點,求拋物線的解析式;
          (3)問C點是否在所求的拋物線上?
          (1)連接AC,
          ∵BC是⊙A的切線,
          ∴∠BCA=90°,
          ∵⊙A的半徑為4,A的坐標為(2,0),
          ∴C(0,2
          3
          ),
          ∵OC⊥AB,
          ∴△AOC△ACB,
          ∴AC2=OA•AB,
          ∵42=2×AB得AB=8,
          ∴B(-6,0),
          ∴直線BC的解析式為y=
          3
          3
          x+2
          3
          (4分);

          (2)∵E(-2,0)、F(6,0),
          設y=a(x+2)(x-6)=a(x-2)2-16a,
          由于頂點在直線BC上,
          故(2,-16a)代入y=
          3
          3
          x+2
          3
          ,
          可得a=-
          3
          6
          ,
          ∴求得拋物線的解析式為y=-
          3
          6
          x2+
          2
          3
          3
          x+2
          3
          (5分);

          (3)當x=0時,y=2
          3

          ∴C點在所求的拋物線y=-
          3
          6
          x2+
          2
          3
          3
          x+2
          3
          上.(3分)
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:不詳 題型:解答題

          (以下兩小題選做一題,第1小題滿分14分,第2小題滿分為10分.若兩小題都做,以第1小題計分)
          選做第______小題.
          (1)一張矩形紙片OABC平放在平面直角坐標系內(nèi),O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
          ①如圖,將紙片沿CE對折,點B落在x軸上的點D處,求點D的坐標;
          ②在①中,設BD與CE的交點為P,若點P,B在拋物線y=x2+bx+c上,求b,c的值;
          ③若將紙片沿直線l對折,點B落在坐標軸上的點F處,l與BF的交點為Q,若點Q在②的拋物線上,求l的解析式.
          (2)一張矩形紙片OABC平放在平面直角坐標系內(nèi),O為原點,點A在x的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
          ①求直線AC的解析式;
          ②若M為AC與BO的交點,點M在拋物線y=-
          8
          5
          x2+kx上,求k的值;
          ③將紙片沿CE對折,點B落在x軸上的點D處,試判斷點D是否在②的拋物線上,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
          (1)求拋物線的解析式;
          (2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
          (3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(0,1),B(2,0),O(0,0),將此三角板繞原點O逆時針旋轉(zhuǎn)90°,得到△A′B′O.
          (1)一拋物線經(jīng)過點A′、B′、B,求該拋物線的解析式;
          (2)設點P是在第一象限內(nèi)拋物線上的一動點,是否存在點P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標;若不存在,請說明理由.
          (3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質(zhì).

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          拋物線y=ax2+bx+c(a≠0)的頂點坐標是(-2,-1),與x軸有兩個交點且交點間的距離是2,則這個拋物線的解析式為y=______.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在正方形ABCD中,E是邊BC上的一點.
          (1)若線段BE的長度比正方形ABCD的邊長少2cm,且△ABE的面積為4cm2,試求這個正方形ABCD的面積;
          (2)若正方形ABCD的面積為8cm2,E是邊BC上的一個動點,設線段BE的長為xcm,△ABE的面積為ycm2,試求y與x之間的函數(shù)關系式和函數(shù)的定義域;
          (3)當x取何值時,第(2)小題中所求函數(shù)的函數(shù)值為2?

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,一次函數(shù)y=-2x+t(t>0)的圖象與x軸,y軸分別交于點C,D.
          (1)求點C,點D的坐標;
          (2)已知點P是二次函數(shù)y=-x2+3x圖象在y軸右側(cè)部分上的一個動點,若以點C,點D為直角頂點的△PCD與△OCD相似.求t的值及對應的點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          醫(yī)藥公司推出了一種抗感冒藥,年初上市后,公司經(jīng)歷了從虧損到盈利的過程.如圖的二次函數(shù)圖象(部分)表示了該公司年初以來累積利潤S(萬元)與時間t(月)之間的關系(即前t個月的利潤總和S與t之間的關系).
          根據(jù)圖象提供信息,解答下列問題:
          (1)公司從第幾個月末開始扭虧為盈;
          (2)累積利潤S與時間t之間的函數(shù)關系式;
          (3)求截止到幾月末公司累積利潤可達30萬元;
          (4)求第8個月公司所獲利是多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          如圖,已知一動圓的圓心P在拋物線y=
          1
          2
          x2-3x+3上運動.若⊙P半徑為1,點P的坐標為(m,n),當⊙P與x軸相交時,點P的橫坐標m的取值范圍是______.

          查看答案和解析>>

          同步練習冊答案