日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•玉林)如圖,在平面直角坐標(biāo)系xOy中,梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,過(guò)點(diǎn)A的雙曲線(xiàn)y=
          k
          x
          的一支在第一象限交梯形對(duì)角線(xiàn)OC于點(diǎn)D,交邊BC于點(diǎn)E.
          (1)填空:雙曲線(xiàn)的另一支在第
          象限,k的取值范圍是
          k>0
          k>0
          ;
          (2)若點(diǎn)C的坐標(biāo)為(2,2),當(dāng)點(diǎn)E在什么位置時(shí),陰影部分的面積S最小?
          (3)若
          OD
          OC
          =
          1
          2
          ,S△OAC=2,求雙曲線(xiàn)的解析式.
          分析:(1)根據(jù)反比例函數(shù)圖象與性質(zhì)得到:雙曲線(xiàn)y=
          k
          x
          的一支在第一象限,則k>0,得到另一支在第三象限;
          (2)根據(jù)梯形的性質(zhì),AC∥x軸,BC⊥x軸,而點(diǎn)C的坐標(biāo)為(2,2),則A點(diǎn)的縱坐標(biāo)為2,E點(diǎn)的橫坐標(biāo)為2,B點(diǎn)坐標(biāo)為(2,0),再分別把y=2或x=2代入y=
          k
          x
          可得到A點(diǎn)的坐標(biāo)為(
          k
          2
          ,2),E點(diǎn)的坐標(biāo)為(2,
          k
          2
          ),然后計(jì)算S陰影部分=S△ACE+S△OBE=
          1
          2
          ×(2-
          k
          2
          )×(2-
          k
          2
          )+
          1
          2
          ×2×
          k
          2
          =
          1
          8
          k2-
          1
          2
          k+2,配方得
          1
          8
          (k-2)2+
          3
          2
          ,當(dāng)k=2時(shí),S陰影部分最小值為
          3
          2
          ,則E點(diǎn)的坐標(biāo)為(2,1),即E點(diǎn)為BC的中點(diǎn);
          (3)設(shè)D點(diǎn)坐標(biāo)為(a,
          k
          a
          ),由
          OD
          OC
          =
          1
          2
          ,則OD=DC,即D點(diǎn)為OC的中點(diǎn),于是C點(diǎn)坐標(biāo)為(2a,
          2k
          a
          ),得到A點(diǎn)的縱坐標(biāo)為
          2k
          a
          ,把y=
          2k
          a
          代入y=
          k
          x
          得x=
          a
          2
          ,確定A點(diǎn)坐標(biāo)為(
          a
          2
          ,
          2k
          a
          ),根據(jù)三角形面積公式由S△OAC=2得到
          1
          2
          ×(2a-
          a
          2
          )×
          2k
          a
          =2,然后解方程即可求出k的值.
          解答:解:(1)三,k>0;
          (2)∵梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,
          而點(diǎn)C的坐標(biāo)為(2,2),
          ∴A點(diǎn)的縱坐標(biāo)為2,E點(diǎn)的橫坐標(biāo)為2,B點(diǎn)坐標(biāo)為(2,0),
          把y=2代入y=
          k
          x
          得x=
          k
          2
          ;把x=2代入y=
          k
          x
          得y=
          k
          2

          ∴A點(diǎn)的坐標(biāo)為(
          k
          2
          ,2),E點(diǎn)的坐標(biāo)為(2,
          k
          2
          ),
          ∴S陰影部分=S△ACE+S△OBE
          =
          1
          2
          ×(2-
          k
          2
          )×(2-
          k
          2
          )+
          1
          2
          ×2×
          k
          2

          =
          1
          8
          k2-
          1
          2
          k+2
          =
          1
          8
          (k-2)2+
          3
          2
          ,
          當(dāng)k-2=0,即k=2時(shí),S陰影部分最小,最小值為
          3
          2
          ;
          ∴E點(diǎn)的坐標(biāo)為(2,1),即E點(diǎn)為BC的中點(diǎn),
          ∴當(dāng)點(diǎn)E在BC的中點(diǎn)時(shí),陰影部分的面積S最;
          (3)設(shè)D點(diǎn)坐標(biāo)為(a,
          k
          a
          ),
          OD
          OC
          =
          1
          2
          ,
          ∴OD=DC,即D點(diǎn)為OC的中點(diǎn),
          ∴C點(diǎn)坐標(biāo)為(2a,
          2k
          a
          ),
          ∴A點(diǎn)的縱坐標(biāo)為
          2k
          a

          把y=
          2k
          a
          代入y=
          k
          x
          得x=
          a
          2
          ,
          ∴A點(diǎn)坐標(biāo)為(
          a
          2
          ,
          2k
          a
          ),
          ∵S△OAC=2,
          1
          2
          ×(2a-
          a
          2
          )×
          2k
          a
          =2,
          ∴k=
          4
          3
          ,
          ∴雙曲線(xiàn)的解析式為y=
          4
          3x
          點(diǎn)評(píng):本題考查了反比例函數(shù)綜合題:當(dāng)k>0時(shí),反比例函數(shù)y=
          k
          x
          (k≠0)的圖象分布在第一、三象限;點(diǎn)在反比例函數(shù)圖象上,則點(diǎn)的橫縱坐標(biāo)滿(mǎn)足圖象的解析式;運(yùn)用梯形的性質(zhì)得到平行線(xiàn)段,從而找到點(diǎn)的坐標(biāo)特點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•玉林)如圖,在平面直角坐標(biāo)系xOy中,矩形AOCD的頂點(diǎn)A的坐標(biāo)是(0,4),現(xiàn)有兩動(dòng)點(diǎn)P,Q,點(diǎn)P從點(diǎn)O出發(fā)沿線(xiàn)段OC(不包括端點(diǎn)O,C)以每秒2個(gè)單位長(zhǎng)度的速度勻速向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿線(xiàn)段CD(不包括端點(diǎn)C,D)以每秒1個(gè)單位長(zhǎng)度的速度勻速向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q同時(shí)出發(fā),同時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)t=2(秒)時(shí),PQ=2
          5

          (1)求點(diǎn)D的坐標(biāo),并直接寫(xiě)出t的取值范圍.
          (2)連接AQ并延長(zhǎng)交x軸于點(diǎn)E,把AE沿AD翻折交CD延長(zhǎng)線(xiàn)于點(diǎn)F,連接EF,則△AEF的面積S是否隨t的變化而變化?若變化,求出S與t的函數(shù)關(guān)系式;若不變化,求出S的值.
          (3)在(2)的條件下,t為何值時(shí),四邊形APQF是梯形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•玉林)如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)到△A′BC′的位置,點(diǎn)C′在A(yíng)C上,A′C′與AB相交于點(diǎn)D,則C′D=
          5
          2
          5
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•玉林)如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點(diǎn)D,E,過(guò)劣弧
          DE
          (不包括端點(diǎn)D,E)上任一點(diǎn)P作⊙O的切線(xiàn)MN與AB,BC分別交于點(diǎn)M,N,若⊙O的半徑為r,則Rt△MBN的周長(zhǎng)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•玉林)如圖,已知點(diǎn)O為Rt△ABC斜邊AC上一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑的⊙O與BC相切于點(diǎn)E,與AC相交于點(diǎn)D,連接AE.
          (1)求證:AE平分∠CAB;
          (2)探求圖中∠1與∠C的數(shù)量關(guān)系,并求當(dāng)AE=EC時(shí)tanC的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案