日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,矩形的邊軸上,且,,直線經(jīng)過點(diǎn),交軸于點(diǎn)
          (1)點(diǎn)的坐標(biāo)分別是       ),       );
          (2)求頂點(diǎn)在直線上且經(jīng)過點(diǎn)的拋物線的解析式;
          (3)將(2)中的拋物線沿直線向上平移,平移后的拋物線交軸于點(diǎn),頂點(diǎn)為點(diǎn).求出當(dāng)時拋物線的解析式.

          (1) C(4,2),D(1,2);(2);(3)y=(x﹣2.

          解析試題分析:(1)根據(jù)題意可得點(diǎn)C的縱坐標(biāo)為3,代入直線解析式可得出點(diǎn)C的橫坐標(biāo),繼而也可得出點(diǎn)D的坐標(biāo);
          (2)由題意可得點(diǎn)C和點(diǎn)D關(guān)于拋物線的對稱軸對稱,從而得出拋物線的對稱軸為x=,再由拋物線的頂點(diǎn)在直線y=x?2上,可得出頂點(diǎn)坐標(biāo)為(),設(shè)出頂點(diǎn)式,代入點(diǎn)C的坐標(biāo)即可得出答案.
          試題解析:(1)C(4,2),D(1,2
          (2)由二次函數(shù)對稱性得,頂點(diǎn)橫坐標(biāo)為,
          令x=,則,
          ∴頂點(diǎn)坐標(biāo)為(,),
          ∴設(shè)拋物線解析式為,把點(diǎn)D(1,)代入得,
          ∴解析式為
          (3)設(shè)頂點(diǎn)E在直線上運(yùn)動的橫坐標(biāo)為m,則E(m,
          ∴可設(shè)解析式為
          當(dāng)GE=EF時,F(xiàn)G=m,則F(0,m﹣),
          代入解析式得:m2+m﹣=m﹣
          解得m=0(舍去),m=,
          此時所求的解析式為:y=(x﹣2
          考點(diǎn):二次函數(shù)綜合題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知拋物線經(jīng)過點(diǎn)A(﹣2,0)、B(4,0)、C(0,﹣8).
          (1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
          (2)直線CD交x軸于點(diǎn)E,過拋物線上在對稱軸的右邊的點(diǎn)P,作y軸的平行線交x軸于點(diǎn)F,交直線CD于M,使PM=EF,請求出點(diǎn)P的坐標(biāo);
          (3)將拋物線沿對稱軸平移,要使拋物線與(2)中的線段EM總有交點(diǎn),那么拋物線向上最多平移多少個單位長度,向下最多平移多少個單位長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          某商家計劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共20臺,空調(diào)的采購單價y1(元/臺)與采購數(shù)量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購單價y2(元/臺)與采購數(shù)量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
          (1)經(jīng)商家與廠家協(xié)商,采購空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購單價不低于1200元,問該商家共有幾種進(jìn)貨方案?
          (2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問采購空調(diào)多少臺時總利潤最大?并求最大利潤.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在y軸和x軸上,AB∥x軸,sinC=,點(diǎn)P從O點(diǎn)出發(fā),沿邊OA、AB、BC勻速運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿邊CO勻速運(yùn)動。點(diǎn)P與點(diǎn)Q同時出發(fā),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)P運(yùn)動的時間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段OE、線段EF與曲線段FG給出.
          (1)點(diǎn)P的運(yùn)動速度為     cm/s, 點(diǎn)B、C的坐標(biāo)分別為     ,     ;
          (2)求曲線FG段的函數(shù)解析式;
          (3)當(dāng)t為何值時,△CPQ的面積是四邊形OABC的面積的

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          拋物線軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其中點(diǎn)B的坐標(biāo)為.
          (1)求拋物線對應(yīng)的函數(shù)表達(dá)式;]
          (2)將(1)中的拋物線沿對稱軸向上平移,使其頂點(diǎn)M落在線段BC上,記該拋物線為G,求拋物線G所對應(yīng)的函數(shù)表達(dá)式;
          (3)將線段BC平移得到線段(B的對應(yīng)點(diǎn)為,C的對應(yīng)點(diǎn)為),使其經(jīng)過(2)中所得拋物線G的頂點(diǎn)M,且與拋物線G另有一個交點(diǎn)N,求點(diǎn)到直線的距離的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過(,0)和(,0)兩點(diǎn).
          (1)求此二次函數(shù)的表達(dá)式.
          (2)直接寫出當(dāng)<x<1時,y的取值范圍.
          (3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個單位后,與二次函數(shù)圖象交點(diǎn)的橫坐標(biāo)分別是a和b,其中a<2<b,試求m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知拋物線 (b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,–1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
          (1)如圖,若該拋物線過A,B兩點(diǎn),求b,c的值;
          (2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動,且與直線AC交于另一點(diǎn)Q.
          ①點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M,P,Q三點(diǎn)為頂點(diǎn)的三角形是以PQ為腰的等腰直角三角形時,求點(diǎn)M的坐標(biāo);
          ②取BC的中點(diǎn)N,連接NP,BQ.當(dāng)取最大值時,點(diǎn)Q的坐標(biāo)為________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知直角坐標(biāo)系中有一點(diǎn)A(-4,3),點(diǎn)B在x軸上,△AOB是等腰三角形。
          (1)求滿足條件的所有點(diǎn)B的坐標(biāo)。(直接寫出答案)
          (2)求過O、A、B三點(diǎn)且開口向下的拋物線的函數(shù)解析式。(只需求出滿足條件的即可)。
          (3)在(2)中求出的拋物線上存在點(diǎn)p,使得以O(shè)、A、B、P四點(diǎn)為頂點(diǎn)的四邊形是梯形,求滿足條件的所有點(diǎn)P的坐標(biāo)及相應(yīng)梯形的面積。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,拋物線與x軸交于點(diǎn)A(-2,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,),線段AC上有一動點(diǎn)P從點(diǎn)A出發(fā),以每秒1個單位長度的速度向點(diǎn)C移動,線段AB上有另一個動點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度向點(diǎn)A移動,兩動點(diǎn)同時出發(fā),設(shè)運(yùn)動時間為t秒.
          (1)求該拋物線的解析式;
          (2)在整個運(yùn)動過程中,是否存在某一時刻,使得以A,P,Q為頂點(diǎn)的三角形與△AOC相似?如果存在,請求出對應(yīng)的t的值;如果不存在,請說明理由.
          (3)在y軸上有兩點(diǎn)M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,請直接寫出相應(yīng)的m、t的值以及AM+MN+NP的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案