日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:正方形ABCD的邊長為2,△EFG為等腰直角三角形,∠EGF=90°.
          (1)如圖1,當(dāng)點G與點D重合,點E在正方形ABCD的對角線AC上時.求AE+AF的值;
          (2)如圖2,當(dāng)點G與點D重合,點E在線段CA的延長線上時.通過觀察、計算,你能發(fā)現(xiàn)AF與AE有怎樣的數(shù)量關(guān)系,并說明理由;
          (3)如圖3,當(dāng)點G在線段DA的延長線上時,設(shè)AG=x.則線段AE、AF與x有怎樣的數(shù)量關(guān)系,請說明理由.
          分析:(1)當(dāng)點G與點D重合,點E在正方形ABCD的對角線AC上時,AE+AF=2
          2
          ,首先利用正方形的性質(zhì)和等腰直角三角形的性質(zhì)證明△FDA≌△EDC,由全等的性質(zhì)得到AF=EC,
          再利用勾股定理求出AC=2
          2
          ,所以AE+AF=AE+EC=AC=2
          2

          (2)當(dāng)點G與點D重合,點E在線段CA的延長線上時,AF-AE=2
          2
          ,首先利用正方形的性質(zhì)和等腰直角三角形的性質(zhì)證明△FDA≌△EDC,由全等的性質(zhì)得到AF=EC,∴AF-AE=EC-AE=AC=2
          2
          ;
          (3)當(dāng)點G在線段DA的延長線上時,設(shè)AG=x,AE-AF=
          2
          x
          ,過點G作GH⊥AG,交AE于點H,利用已知條件首先證明△FGA≌△EGH,所以AE-AF=AE-EH=AH,在Rt△GAH中,根據(jù)勾股定理得到AH=
          AG2+AH2
          =
          2
          x
          ,所以AE-AF=
          2
          x
          解答:解:(1)∵四邊形ABCD為正方形,
          ∴AD=CD,∠ADC=90°,
          ∵△GEF為等腰直角三角形,
          ∴GF=GE,∠EGF=90°,
          ∴∠FDA=∠CDE,
          ∴△FDA≌△EDC(SAS) 
          ∴AF=EC,
          ∵根據(jù)勾股定理:AC=2
          2

          ∴AE+AF=AE+EC=AC=2
          2
          ;
          (2)AF-AE=2
          2
          ,
          ∵四邊形ABCD為正方形
          ∴AD=CD,∠ADC=90°,
          ∵△GEF為等腰直角三角形,
          ∴GF=GE,∠EGF=90°,
          ∴∠FDA=∠CDE,
          ∴△FDA≌△EDC(SAS),
          ∴AF=EC
          ∴AF-AE=EC-AE=AC=2
          2
          ;
          (3)AE-AF=
          2
          x
          ,
          過點G作GH⊥AG,交AE于點H,
          ∴∠HGA=90°,
          ∵AC為正方形對角線,
          ∴∠GAE=45°
          ∴△GAH為等腰直角三角形,
          ∴HG=AG,
          又∵GF=GE,∠EGF=90°,
          ∴∠EGH=∠FGA,
          ∴△FGA≌△EGH(SAS),
          ∴EH=AF,
          ∴AE-AF=AE-EH=AH,
          在Rt△GAH中,根據(jù)勾股定理:
          ∴AH=
          AG2+AH2
          =
          2
          x
          ,
          ∴AE-AF=
          2
          x
          點評:本題考查了正方形的性質(zhì)、等腰三角形的性質(zhì)和判定、全等三角形的性質(zhì)和判定以及勾股定理的運用,題目的綜合性很強,難度不小,特別是第三小題正確的作出輔助線是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知:正方形ABCD邊長為1,E、F、G、H分別為各邊上的點,且AE=BF=CG=DH,設(shè)小正方形EFGH的面積為s,AE為x,則s關(guān)于x的函數(shù)圖象大致是( 。
          A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          22、(1)如圖,已知在正方形ABCD中,M是AB的中點,E是AB延長線上一點,MN⊥DM且交∠CBE的平分線于N.試判定線段MD與MN的大小關(guān)系;
          (2)若將上述條件中的“M是AB的中點”改為“M是AB上或AB延長線上任意一點”,其余條件不變.試問(1)中的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:正方形ABCD邊長為4cm,E,F(xiàn)分別為CD,BC的中點,動點P在線段AB上從B?A以2cm/精英家教網(wǎng)s的速度運動,同時動點Q在線段FC上從F?C以1cm/s的速度運動,動點G在PC上,且∠EGC=∠EQC,連接PD.設(shè)運動時間為t秒.
          (1)求證:△CQE∽△APD;
          (2)問:在運動過程中CG•CP的值是否發(fā)生改變?如果不變,請求這個值;若改變,請說明理由;
          (3)當(dāng)t為何值時,△CGE為等腰三角形并求出此時△CGE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          18、如圖,已知在正方形ABCD中,P是BC上的一點,且AP=DP.求證:P是BC中點.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
          6
          .下列結(jié)論:
          ①△APD≌△AEB﹔②點B到直線AE的距離為
          3
          ﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
          2

          其中正確結(jié)論的序號是( 。

          查看答案和解析>>

          同步練習(xí)冊答案